observed that, by changing the chirality of the binaphthyl
part as in 1b, the results were equally good with enantio-
selectivity of 94% (entry 2). It appears that chirality of the
binaphthyl group is not playing much of a role because 88%
ee was obtained for the same reaction by using 1c, a
diastereomeric mixture of 1a and 1b (1:1) (entry 3).
Scheme 1. Synthesis of Chiral Ligands
The diamine 1a was taken as the catalyst of choice and
evaluated for the same reaction in different solvents with or
without TFA (Table 2). Initially, the reaction was done by
Table 2. Screening of Solventsa
in organic medium due to the aromatic nature of the
binaphthyl part. The coupling of L-proline with a chiral (SS
or RR) amine A6 under usual conditions gave an amide which
was converted into the final diamine 1a and 1b, respectively,
in two steps as described in Scheme 1. The preliminary
experiments were conducted by taking cyclohexanone as a
donor and â-nitrostyrene as an acceptor using 10 mol % of
the diamine 1 and TFA in brine (Table 1). The diamine
time
(h)
yield
(%)
eec (%)
syn
entry
solvent
DMSO
DMF
CH3CN
CHCl3
DCM
EtOH
MeOH
IPA
THF
toluene
water
brine
water
brine
THF/water
THF/brine
DMSO/water
DMSO/brine
syn/antib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
16
18
15
18
18
20
20
15
15
35
12
16
10
10
16
10
17
12
77
65
87
48
80
77
77
90
94
40
90
95
95
98
91
92
88
88
94:6
94:6
98:2
97:3
98:2
96:4
95:5
98:2
97:3
94:6
94:6
94:6
97:3
94:6
95:5
98:2
98:2
95:5
62
85
90
91
92
88
89
92
90
66
90d
91d
90
96
92
86
91
92
Table 1. Catalytic Screening of Ligandsa
time
(h)
yield
(%)
eec (%)
syn
entry
catalyst
syn/antib
1
2
3
1a
1b
1c
10
10
12
98
96
85
94:6
97:3
95:5
96
94
88
a 10 mol % of 1 and TFA used. b Diastereoselectivities were determined
by 1H NMR analysis of the products. c The ee’s were determined by HPLC
using a Chiralpak AS-H column.
a 10 mol % of 1a and TFA used unless stated otherwise. b Diastereo-
1
selectivities were determined by H NMR analysis of the products. c The
ee’s were determined by HPLC using a Chiralpak AS-H column. d Reactions
were carried out in the absence of TFA.
(S,SS)-1a gave the best result: 98% yield and 96% ee (entry
1) for the syn diastereomer (dr ) 94:6). Interestingly, it was
using 10 mol % of 1a and TFA in a variety of organic
solvents (entries 1-10). The most polar aprotic solvent, such
as DMSO, and nonpolar aprotic solvent, such as toluene,
gave poor enantioselectivity: 62 and 66% ee, respectively
(entries 1 and 10). MeCN, CHCl3, and CH2Cl2 gave excellent
diastereoselectivity (syn/anti ) 98:2) and high enantio-
selectivity (90-92% ee). Protic solvents such as MeOH,
EtOH, and i-PrOH gave similar results (entries 6-8). When
the medium was changed from organic to aqueous, the
enantioselectivity remained in the same range. For example,
when the Michael reaction was done in water, the enantio-
selectivity was 90% and TFA did not have any role to play
on the results (entries 11 and 13). However, in brine, the
enantioselectivity could be increased from 91 to 96% using
TFA (entries 12 and 14). A combination of organic solvent
and water also gave high enantioselectivities in the reaction
(entries 15-18).
(4) (a) Xu, Y.; Cordova, A. Chem. Commun. 2006, 460. (b) Mase, N.;
Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am.
Chem. Soc. 2006, 128, 4966. (c) Zu, L.; Wang, J.; Li, H.; Wang, W. Org.
Lett. 2006, 8, 3077. (d) Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006,
128, 9624. (e) Zhu, M.-K.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-
Z. Tetrahedron: Asymmetry 2006, 17, 491. (f) Luo, S.; Mi, X.; Zhang, L.;
Liu, S.; Xu, H.; Cheng, J.-P. Angew. Chem., Int. Ed. 2006, 45, 3093. (g)
Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.;
Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105. (h) Okino, T.; Hoashi, Y.;
Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. (i)
Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369. (j)
Tsogoeva, S. B.; Yalalov, D. A.; Hateley, M. J.; Weckbecker, C.;
Huthmacher, K. Eur. J. Org. Chem. 2005, 4995. (k) Hayashi, Y.; Gotoh,
T.; Hayasji, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (l)
Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7, 1967.
(m) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367.
(n) Wang, J.; Li, H.; Duan, W.-H.; Zu, L.-S.; Wang, W. Org. Lett. 2005,
7, 4713. (o) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004,
126, 9906. (p) Ishii, T.; Fiujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am.
Chem. Soc. 2004, 126, 9558. (q) Cobb, A. J. A.; Longbottom, D. A.; Shaw,
D. M.; Ley, S. V. Chem. Commun. 2004, 1808. (r) Mase, N.; Thayumana-
van, R.; Tanaka, F.; Barbas, C. F., III. Org. Lett. 2004, 6, 2527. (s) Kotrusz,
P.; Toma, S.; Schmalz, H.-G.; Adler, A. Eur. J. Org. Chem. 2004, 1577.
(t) Andrey, O.; Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, 5, 2559.
(u) Tian, S.; Ran, H.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900. (v)
Enders, D.; Seki, A. Synlett 2002, 26. (w) List, B.; Pojarliev, P.; Martin,
H. J. Org. Lett. 2001, 3, 2423.
(5) For a catalyst that works both in isopropanol and water, see ref 4c.
(6) Hawkins, J. M.; Fu, G. C. J. Org. Chem. 1986, 51, 2820.
1118
Org. Lett., Vol. 9, No. 6, 2007