Journal of the American Chemical Society
Page 4 of 5
gardless of the initial structure due to thermal rearrangement reac-
tions, as was the case shown for EI-den.
(7)
Fisher, J. C.; Tanthana, J.; Chuang, S. S. C. Environ. Prog.
Sustain. Energy 2009, 28, 589.
Ma, X.; Wang, X.; Song, C. J. Am. Chem. Soc. 2009, 131, 5777.
Chen, C.; Yang, S.-T.; Ahn, W.-S.; Ryoo, R. Chem. Commun.
2009, No. 24, 3627.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(8)
9)
In summary, linear and dendritic PPI were found to have higher
(
CO capture capacities and efficiencies compared to PEI. Moreo-
2
ver, these PPI-based sorbents were more resistant to oxidative
degradation. These results suggest that development of higher
molecular weight poly(propylenimine)-based sorbents, either
(10)
11)
Chaikittisilp, W.; Lunn, J. D.; Shantz, D. F.; Jones, C. W. Chem.
- A Eur. J. 2011, 17, 10556.
Wang, X.; Ma, X.; Song, C.; Locke, D. R.; Siefert, S.; Winans,
R. E.; Möllmer, J.; Lange, M.; Möller, A.; Gläser, R.
Microporous Mesoporous Mater. 2013, 169, 103.
(
linear or branched, may be advantageous for direct CO capture
2
from air. These types of sorbent molecules should provide superi-
or CO2 capture capacity and efficiency compared to their
poly(ethylenimine) counterparts and additionally be more re-
sistant to oxidative degradation, making them less sensitive to
oxygen during regeneration and allowing for longer sorbent work-
ing lifetimes.
(12)
Choi, S.; Gray, M. L.; Jones, C. W. ChemSusChem 2011, 4, 628.
Chaikittisilp, W.; Kim, H. J.; Jones, C. W. Energy Fuels 2011,
(13)
2
5, 5528.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(14)
Sayari, A.; Liu, Q.; Mishra, P. ChemSusChem 2016, 5, 1.
Lively, R. P.; Realff, M. J. AIChE J. 2016, 62, 3699.
Bollini, P.; Choi, S.; Drese, J. H.; Jones, C. W. Energy Fuels
(15)
(16)
2
011, 25, 2416.
Heydari-Gorji, A.; Sayari, A. Ind. Eng. Chem. Res. 2012, 51,
887.
Ahmadalinezhad, A.; Sayari, A. Phys. Chem. Chem. Phys. 2014,
6, 1529.
(17)
6
ASSOCIATED CONTENT
Supporting Information
(18)
1
(19)
(20)
(21)
(22)
Bali, S.; Chen, T. T.; Chaikittisilp, W.; Jones, C. W. Energy
Fuels 2013, 27, 1547.
Hammache, S.; Hoffman, J. S.; Gray, M. L.; Fauth, D. J.;
Howard, B. H.; Pennline, H. W. Energy Fuels 2013, 27, 6899.
Sakwa-Novak, M. A.; Jones, C. W. ACS Appl. Mater. Interfaces
The Supporting Information is available free of charge on the
ACS Publication website.
Detailed information about all materials and synthetic procedures,
other figures as described in the text (PDF)
2
014, 6, 9245.
Sakwa-Novak, M. A.; Yoo, C.-J.; Tan, S.; Rashidi, F.; Jones, C.
W. ChemSusChem 2016, 9, 1859.
Heydari-Gorji, A.; Belmabkhout, Y.; Sayari, A. Microporous
Mesoporous Mater. 2011, 145, 146.
Didas, S. A.; Zhu, R.; Brunelli, N. A.; Sholl, D. S.; Jones, C. W.
J. Phys. Chem. C 2014, 118, 12302.
Bacsik, Z.; Ahlsten, N.; Ziadi, A.; Zhao, G.; Garcia-Bennett, A.
E.; Martín-Matute, B.; Hedin, N. Langmuir 2011, 27, 11118.
Aziz, B.; Zhao, G.; Hedin, N. Langmuir 2011, 27, 3822.
Borkovec, M.; Koper, G. J. M. J. Phys. Chem. 1994, 98, 6038.
Koper, G. J. M.; van Genderen, M. H. P.; Elissen-Román, C.;
Baars, M. W. P. L.; Meijer, E. W.; Borkovec, M. J. Am. Chem.
Soc. 1997, 119, 6512.
Holewinski, A.; Sakwa-Novak, M. A.; Jones, C. W. J. Am.
Chem. Soc. 2015, 137, 11749.
Hahn, M. W.; Steib, M.; Jentys, A.; Lercher, J. A. J. Phys.
Chem. C 2015, 119, 4126.
AUTHOR INFORMATION
Corresponding Author
(23)
(24)
(25)
*E-mail: cjones@chbe.gatech.edu
Notes
Funding for the initial work was provided by Global Thermostat,
LLC. Partial support was also provided as part of UNCAGE-ME,
an Energy Frontier Research Center funded by the U.S. Depart-
ment of Energy, Office of Science, Basic Energy Sciences under
award no. DE-SC0012577.
(26)
(27)
(28)
(29)
(30)
(31)
(32)
ACKNOWLEDGMENT
Funding for this work was provided by Global Thermostat, LLC.
Brilman, D. W. F.; Veneman, R. Energy Procedia 2013, 37,
6
070.
Li, K.; Jiang, J.; Tian, S.; Yan, F.; Chen, X. J. Mater. Chem. A
2015, 3, 2166.
Bacsik, Z.; Hedin, N. Vib. Spectrosc. 2016, 87, 215.
Srikanth, C. S.; Chuang, S. S. C. ChemSusChem 2012, 5, 1435.
Srikanth, C. S.; Chuang, S. S. C. J. Phys. Chem. C 2013, 117,
9196.
Lepaumier, H.; Picq, D.; Carrette, P.-L. Ind. Eng. Chem. Res.
2009, 48, 9068.
Lepaumier, H.; Martin, S.; Picq, D.; Delfort, B.; Carrette, P.-L.
Ind. Eng. Chem. Res. 2010, 49, 4553.
REFERENCES
(1)
Choi, S.; Drese, J. H.; Eisenberger, P. M.; Jones, C. W. Environ.
Sci. Technol. 2011, 45, 2420.
(33)
(34)
(35)
(2)
Kumar, A.; Madden, D. G.; Lusi, M.; Chen, K.-J.; Daniels, E.
A.; Curtin, T.; Perry, J. J.; Zaworotko, M. J. Angew. Chemie Int.
Ed. 2015, 54, 14372.
(36)
(37)
(3)
4)
(5)
6)
Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W.
Chem. Rev. 2016, 116, 11840.
Xu, X.; Song, C.; Andrésen, J. M.; Miller, B. G.; Scaroni, A. W.
Energy Fuels 2002, 16, 1463.
Xu, X.; Song, C.; Andrésen, J. M.; Miller, B. G.; Scaroni, A. W.
Microporous Mesoporous Mater. 2003, 62, 29.
Son, W.-J.; Choi, J.-S.; Ahn, W.-S. Microporous Mesoporous
Mater. 2008, 113, 31.
(
(
ACS Paragon Plus Environment