Journal of the American Chemical Society
Article
(9) (a) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F.
Chem. Rev. 2011, 111, 3076. (b) Denmark, S. E.; Heemstra, J. R. Jr.;
Beutner, G. L. Angew. Chem., Int. Ed. 2005, 44, 4682. (c) Casiraghi, G.;
Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929.
(d) Kalesse, M. Top. Curr. Chem. 2005, 244, 43.
(10) (a) Fukuzumi, S. Bull. Chem. Soc. Jpn. 1997, 70, 1. (b) Fukuzumi,
S. Org. Biomol. Chem. 2003, 1, 609. (c) Fukuzumi, S. Bull. Chem. Soc.
Jpn. 2006, 79, 177. (d) Fukuzumi, S. Pure Appl. Chem. 2007, 79, 981.
(e) Fukuzumi, S. Pure Appl. Chem. 2003, 75, 577.
(11) (a) Fukuzumi, S.; Ishikawa, K.; Hironaka, K.; Tanaka, T. J. Chem.
Soc., Perkin Trans. 2 1987, 751. (b) Fukuzumi, S.; Ishikawa, M.; Tanaka,
T. Chem. Commun. 1985, 1069. (c) Fukuzumi, S.; Ishikawa, M.; Tanaka,
T. J. Chem. Soc., Perkin Trans. 2 1989, 1811. (d) Ishikawa, M.;
Fukuzumi, S. Chem. Commun. 1990, 1353. (e) Ishikawa, M.; Fukuzumi,
S. J. Chem. Soc., Faraday Trans. 1 1990, 86, 3531. (f) Fukuzumi, S.;
Mochizuki, S.; Tanaka, T. J. Am. Chem. Soc. 1989, 111, 1497. (g) Yuasa,
J.; Yamada, S.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130, 5808.
(12) (a) Fukuzumi, S.; Kuroda, S. Res. Chem. Int. 1999, 25, 789.
(b) Fukuzumi, S.; Tokuda, Y. J. Phys. Chem. 1993, 97, 3737.
(c) Fukuzumi, S.; Chiba, M. J. Chem. Soc., Perkin Trans. 2 1991, 1393.
(d) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. J. Phys. Chem. 1990,
94, 722.
(13) (a) Hayashi, H.; Ogo, S.; Fukuzumi, S. Chem. Commun. 2004,
2714. (b) Hayashi, H.; Ogo, S.; Abura, T.; Fukuzumi, S. J. Am. Chem.
Soc. 2003, 125, 14266.
(14) (a) Halime, Z.; Kotani, H.; Li, Y.; Fukuzumi, S.; Karlin, K. D.
Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 13990. (b) Fukuzumi, S.;
Okamoto, K.; Gros, C. P.; Guilard, R. J. Am. Chem. Soc. 2004, 126,
10441. (c) Fukuzumi, S.; Mochizuki, S.; Tanaka, T. Inorg. Chem. 1989,
28, 2459.
(15) (a) Fukuzumi, S. Prog. Inorg. Chem. 2009, 56, 49. (b) Fukuzumi,
S. Bull. Chem. Soc. Jpn. 1997, 70, 1. (c) Fukuzumi, S.; Ohtsu, H.;
Ohkubo, K.; Itoh, S.; Imahori, H. Coord. Chem. Rev. 2002, 226, 71.
(d) Fukuzumi, S.; Ohkubo, K. Coord. Chem. Rev. 2010, 254, 372.
(16) (a) Fukuzumi, S.; Itoh, S. In Advances in Photochemistry;
(d) Jia, L.; Zhang, G.; Zhang, D.; Xiang, J.; Xu, W.; Zhu, D. Chem.
Commun. 2011, 47, 322.
(24) (a) Yuasa, J.; Suenobu, T.; Fukuzumi, S. J. Am. Chem. Soc. 2003,
125, 12090. (b) Yuasa, J.; Suenobu, T.; Fukuzumi, S. ChemPhysChem
2006, 7, 942. (c) Yuasa, J.; Yamada, S.; Fukuzumi, S. Chem.−Eur. J.
2008, 14, 1866.
(25) (a) Dempsey, J. L.; Winkler, J. R.; Gray, H. B. Chem. Rev. 2010,
110, 7024. (b) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev.
2010, 110, 6961. (c) Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007,
107, 5004.
(26) (a) Reece, S. Y.; Nocera, D. G. Annu. Rev. Biol. Chem. 2009, 78,
673. (b) Chang, C. J.; Chang, M. C. Y.; Damrauer, N. H.; Nocera, D. G.
Biochim. Biophys. Acta 2004, 1655, 13. (c) Cukier, R. I.; Nocera, D. G.
Annu. Rev. Phys. Chem. 1998, 49, 337.
(27) (a) Mayer, J. M.; Rhile, I. J. Biochim. Biophys. Acta 2004, 1655,
51. (b) Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363.
(28) Fukuzumi, S. Helv. Chim. Acta 2006, 89, 2425.
(29) (a) Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee,
Y.-M.; Nam, W. Nature Chem. 2010, 2, 756. (b) Karlin, K. D. Nature
Chem. 2010, 2, 711.
(30) Morimoto, Y.; Kotani, H.; Park, J.; Lee, Y.-M.; Nam, W.;
Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 403.
(31) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
J. Am. Chem. Soc. 2011, 133, 5236.
(32) Park, J.; Morimoto, Y.; Lee, Y.-M.; You, Y.; Nam, W.; Fukuzumi,
S. Inorg. Chem. 2011, 50, 11612.
(33) (a) Fukuzumi, S.; Kotani, H.; Suenobu, T.; Hong, S.; Lee, Y.-M.;
Nam, W. Chem.−Eur. J. 2010, 16, 354. (b) Fukuzumi, S.; Kotani, H.;
Prokop, K. A.; Goldberg, D. P. J. Am. Chem. Soc. 2011, 133, 1859.
(34) (a) Lubben, M.; Meetsma, A.; Wilkinson, E. C.; Feringa, B.;
Que, L. Jr. Angew. Chem., Int. Ed. 1995, 34, 1512. (b) Kaizer, J.;
Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.; Stubna, A.; Kim, J.;
Munck, E.; Nam, W.; Que, L. Jr. J. Am. Chem. Soc. 2004, 126, 472.
̈
(c) Klinker, E. J.; Kaizer, J.; Brennessel, W. W.; Woodrum, N. L.;
Cramer, C. J.; Que, L. Jr. Angew. Chem., Int. Ed. 2005, 44, 3690.
(35) (a) Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155.
(b) Marcus, R. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1111.
(36) Lee, Y.-M.; Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S.
J. Am. Chem. Soc. 2008, 130, 434.
Neckers, D. C., Volman, D. H., von Bunau, G., Eds.; Wiley: New York,
̈
1998; Vol. 25, pp 107−172. (b) Fukuzumi, S.; Itoh, S. Antioxid. Redox
Signaling 2001, 3, 807.
(17) (a) Fukuzumi, S.; Ohkubo, K. Chem.−Eur. J 2000, 6, 4532.
(b) Ohkubo, K.; Menon, S.; Orita, C. A.; Otera, J.; Fukuzumi, S. J. Org.
Chem. 2003, 68, 4720.
(18) (a) Fukuzumi, S.; Okamoto, T. J. Am. Chem. Soc. 1993, 115,
11600. (b) Fukuzumi, S.; Nishizawa, N.; Tanaka, T. J. Chem. Soc.,
Perkin Trans. 2 1985, 371. (c) Fukuzumi, S.; Suenobu, T.; Patz, M.;
Hirasaka, T.; Itoh, S.; Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. 1998,
120, 8060.
(19) (a) Fukuzumi, S.; Kuroda, S.; Tanaka, T. J. Am. Chem. Soc. 1985,
107, 3020. (b) Itoh, S.; Taniguchi, M.; Takada, N.; Nagatomo, S.;
Kitagawa, T.; Fukuzumi, S. J. Am. Chem. Soc. 2000, 122, 12087.
(c) Fukuzumi, S.; Yasui, K.; Suenobu, T.; Ohkubo, K.; Fujitsuka, M.;
Ito, O. J. Phys. Chem. A 2001, 105, 10501.
(20) (a) Fukuzumi, S.; Okamoto, T.; Otera, J. J. Am. Chem. Soc. 1994,
116, 5503. (b) Fukuzumi, S.; Fujii, Y.; Suenobu, T. J. Am. Chem. Soc.
2001, 123, 10191.
(21) (a) Itoh, S.; Kumei, H.; Nagatomo, S.; Kitagawa, T.; Fukuzumi,
S. J. Am. Chem. Soc. 2001, 123, 2165. (b) Fukuzumi, S.; Satoh, N.;
Okamoto, T.; Yasui, K.; Suenobu, T.; Seko, Y.; Fujitsuka, M.; Ito, O.
J. Am. Chem. Soc. 2001, 123, 7756. (c) Fukuzumi, S.; Ohkubo, K.;
Okamoto, T. J. Am. Chem. Soc. 2002, 124, 14147.
(22) (a) Fukuzumi, S.; Okamoto, K.; Imahori, H. Angew. Chem., Int.
Ed. 2002, 41, 620. (b) Okamoto, K.; Imahori, H.; Fukuzumi, S. J. Am.
Chem. Soc. 2003, 125, 7014. (c) Fukuzumi, S.; Okamoto, K.; Yoshida,
Y.; Imahori, H.; Araki, Y.; Ito, O. J. Am. Chem. Soc. 2003, 125, 1007.
(37) (a) Arias, J.; Newlands, C. R.; Abu-Omar, M. M. Inorg. Chem.
2001, 40, 2185. (b) Prokop, K. A.; New, H. M.; de Visser, S. P.;
Goldberg, D. P. J. Am. Chem. Soc. 2011, 133, 15874. (c) Fertinger, C.;
Hessenauer-Ilicheva, N.; Franke, A.; van Eldik, R. Chem.−Eur. J. 2009,
15, 13435. (d) Arunkumar, C.; Lee, Y.-M.; Lee, J. Y.; Fukuzumi, S.;
Nam, W. Chem.−Eur. J. 2009, 15, 11482. (e) Kumar, A.; Goldberg, I.;
Botoshansky, M.; Buchman, Y.; Gross, Z. J. Am. Chem. Soc. 2010, 132,
15233. (f) Benet-Buchholz, J.; Comba, P.; Llobet, A.; Roeser, S.;
Vadivelu, P.; Wiesner, S. Dalton Trans. 2010, 39, 3315.
(38) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory
Chemicals, 5th ed.; Butterworth Heinemann: Amsterdam, 2003.
(39) Park, M. J.; Lee, J.; Suh, Y.; Kim, J.; Nam, W. J. Am. Chem. Soc.
2006, 128, 2630.
(40) Mann, C. K.; Barnes, K. K. In Electrochemical Reactions in Non-
aqueous Systems; Mercel Dekker: New York, 1970.
(41) Thioanisoles can be protonated in the presence of a large excess
of HClO4 (see Figure S3 in the Supporting Information). The plots of
k1 vs concentration exhibit a saturation behavior in the region of high
concentrations of thioanisoles due to the protonation of thioanisoles.
Under the present experimental conditions in Figure S2 of the
Supporting Information, the effect of the protonation of thioanisoles
can be neglected.
(42) (a) Fukuzumi, S.; Chiba, M.; Ishikawa, M.; Ishikawa, K.; Tanaka,
T. J. Chem. Soc., Perkin Trans. 2 1989, 1417. (b) Fukuzumi, S.;
Ishikawa, M.; Tanaka, T. Tetrahedron 1986, 42, 1021. (c) Fukuzumi,
S.; Chiba, M.; Tanaka, T. Chem. Lett. 1989, 31.
́
(d) Saveant, J.-M. J. Am. Chem. Soc. 2008, 130, 4732.
(23) (a) Chen, X.; Bu, Y. J. Am. Chem. Soc. 2007, 129, 9713. (b) Wu,
H.; Zhang, D.; Su, L.; Ohkubo, K.; Zhang, C.; Yin, S.; Mao, L.; Shuai,
Z.; Fukuzumi, S.; Zhu, D. J. Am. Chem. Soc. 2007, 129, 6839. (c) Zeng,
Y.; Zhang, G.; Zhang, D.; Zhu, D. J. Org. Chem. 2009, 74, 4375.
(43) The observed g⊥ value (2.58) is in good agreement with the
value reported for [RuIII(bpy)3]3+, in which the g|| component was not
observed because of its weak intensity; see: (a) Matsuura, K.; Kevan,
L. J. Chem. Soc., Faraday Trans. 1997, 93, 1763. (b) Kotani, H.;
3910
dx.doi.org/10.1021/ja211641s | J. Am. Chem. Soc. 2012, 134, 3903−3911