Page 7 of 9
Journal of the American Chemical Society
nickel β-diketonates to form homogeneous catalysts, electron
transfer reactions involving iron(III) and oxidative addition to
iridium(I). Farday Discuss. 2002, 122, 211.
manganese(V) Corroles to Sulfides. J. Am. Chem. Soc. 2010, 132,
15233.
(19) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
1
2
3
4
5
6
7
8
9
(2) Guilera, G.; Newton, M. A.; Polli, C.; Pascarelli, S.; Guino,
M.; Hii, K. K. In situ investigation of the oxidative addition in
homogeneous Pd catalysts by synchronised time resolved UV-
Vis/EXAFS. Chem. Commun. 2006, 41, 4306.
(3) Mesu, J. G.; van der Eerden, A. M. J.; de Groot, F. M. F.;
Weckhuysen, B. M. Synchrotron Radiation Effects on Catalytic
Systems As Probed with a Combined In-Situ UV−Vis/XAFS
Spectroscopic Setup J. Phys. Chem. B 2005, 109, 4042.
(4) Olivo, G.; Barbieri, A.; Dantignana, V.; Sessa, F.; Migliorati,
V.; Monte, M.; Pascarelli, S.; Narayanan, T.; Lanzalunga, O.; Di
Stefano, S.; D’Angelo, P. Following a Chemical Reaction on the
Millisecond Time Scale by Simultaneous X-ray and UV/Vis
Spectro-scopy. J. Phys. Chem. Lett. 2017, 8, 2958.
(5) Chen, K; Que, L., Jr. Stereospecific Alkane Hydroxylation
by Non-Heme Iron Catalysts: Mechanistic Evidence for an
FeV═O Active Species. J. Am. Chem. Soc. 2001, 123, 6327.
(6) Chen, K.; Costas, M.; Kim, J.; Tipton, A. K.; Que, L., Jr.
Olefin cis-dihydroxylation versus epoxidation by non-heme iron
catalysts: two faces of an Fe(III)-OOH coin. J. Am. Chem. Soc.
2002, 124, 3026.
(7) Nam, W. High-Valent Iron(IV)–Oxo Complexes of Heme
and Non-Heme Ligands in Oxygenation Reactions. Acc. Chem.
Res. 2007, 40, 522.
(8) Talsi, E. P.; Bryliakov, K. P. Chemo- and stereoselective C-
dihydroxylations with H. Coord. Chem. Rev. 2012, 256, 1418.
(9) Nam, W.; Lee, Y.-M.; Fukuzumi, S. Tuning reactivity and
mechanism in oxidation reactions by mononuclear non heme
iron(IV)-oxocomplexes. Acc. Chem. Res. 2014, 47, 1146.
(10) Oloo, W. N.; Que, L., Jr. Bioinspired Non heme Iron
Catalysts for C–H and C═C Bond Oxidation: Insights into the
Nature of the Metal-Based Oxidants. Acc. Chem. Res. 2015, 48,
2612.
(11) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.;
Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. Non
hemeFeIVO complexes that can oxidize the C-H bonds of
cyclohexane at room temperature. J. Am. Chem. Soc. 2004, 126,
472.
(12) Lubben, M.; Meetsma, A.; Wilkinson, E. C.; Feringa, B.;
Que, L., Jr. Non heme Iron Centers in Oxygen Activation:
Characterization of an Iron(III) Hydroperoxide Intermediate.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1512.
(13) Peñéñory, A. B.; Argüello, J. E.; Puiatti, M. Novel Model
Sulfur Compounds as Mechanistic Probes for Enzymatic and
Biomimetic Oxidations. Eur. J. Org. Chem. 2005, 114, 122.
(14) Baciocchi, E.; Gerini, M. F.; Lanzalunga, O.; Lapi, A.; Lo
Piparo, M. G. Mechanism of the oxidation of aromatic sulfides
catalysed by a water soluble iron porphyrin. Org. Biomol. Chem.
2003, 1, 422.
Metal Ion-Coupled Electron Transfer of a Nonheme Oxoiron(IV)
Complex: Remarkable Enhancement of Electron-Transfer Rates
by Sc3+. J. Am. Chem. Soc. 2011, 133, 5236.
(20) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
Proton-Promoted Oxygen Atom Transfer vs Proton-Coupled
Electron Transfer of a Non-Heme Iron(IV)-Oxo Complex. J. Am.
Chem. Soc. 2012, 134, 3903.
(21) Park, J.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
Unified view of oxidative C-H bond cleavage and sulfoxidation
by a non heme iron(IV)-oxo complex via Lewis acid-promoted
electron transfer. Inorg. Chem. 2014, 53, 3618.
(22) Barbieri, A.; Di Stefano, S.; Lanzalunga, O.; Lapi, A.;
Mazzonna, M.; Olivo, G. Role of electron transfer processes in
the oxidation of arylsulfides catalyzed by non heme iron
complexes. Phosphorus, Sulfur and Silicon 2017, 192, 241.
(23) Barbieri, A.; Del Giacco, T.; Di Stefano, S.; Lanzalunga, O.;
Lapi, A.; Mazzonna, M.; Olivo, G. Electron Transfer Mechanism
in the Oxidation of Aryl 1-Methyl-1-phenylethyl Sulfids
Promoted by Non heme Iron(IV)–Oxo Complexes: The Rate of
the Oxygen Rebound Process. J. Org. Chem. 2016, 81, 12382.
(24) Barbieri, A.; De Carlo Chimienti, R.; Del Giacco, T.; Di
Ste-fano, S.; Lanzalunga, O.; Lapi, A.; Mazzonna, M.; Olivo, G.;
Sa-lamone, M. Oxidation of Aryl Diphenylmethyl Sulfides
Promoted by a Nonheme Iron(IV)-OxoComplex: Evidence for an
Electron Transfer-Oxygen Transfer Mechanism. J. Org. Chem.
2016, 81, 2513.
(25) Westre, T.-E.; Kennepohl, P.; DeWitt, J.-G.;Hedman,
B.;Hodgson, K.-O.; Solomon, E.-I. A Multiplet Analysis of Fe K-
Edge 1s→3d Pre-Edge Features of Iron Complexes. J. Am. Chem.
Soc. 1997, 119, 6297.
(26) D’Angelo, P.; Lucarelli, D.; Della Longa, S.; Benfatto, M.;
Hazemann, J.-L.; Feis, A.; Smulevich, G.; Ilari, A.; Bonamore,
A.; Boffi, A. Unusual heme iron-lipid acyl chain coordination in
Escherichia coli flavohemoglobin. Biophys. J. 2004, 86, 3882.
(27) Berry, A.-J.; Yaxley, G.-M.; Woodland, A.-B.; Foran, J.-G.A
XANES calibration for determining the oxidation state of iron in
mantle garnet. Chem. Geol. 2010, 278, 31.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(28) Shulman, R.G.; Yafet, Y.; Eisenberger, P.; Blumberg, W.E.
Observation and interpretation of X-ray absorption edges of iron
compounds and proteins. PNAS 1976, 73, 1384.
(29) For thioanisole a k2 of 0.87 M-1 s-1 is reported in ref. 20
which, under our conditions corresponds to k=k2×[Substrate] =
0.30 s-1 to be compared with 0.53 s-1. It has to be remarked that
the k value reported in ref. 20 was obtained at much lower
concentrations.
(30) The fair agreement between our and literature data
allows us to rule out any damage due to the X-ray beam that was
previously found to occur for reactions involving copper
containing samples (ref. 3).
(15) Baciocchi, E.; Lanzalunga, O.; Malandrucco, S.; Ioele, M.;
Steenken, S. Oxidation of Sulfides by Peroxidases. Involvement
of Radical Cations and the Rate of the Oxygen Rebound Step. J.
Am. Chem. Soc. 1996, 118, 8973.
(16) Goto, Y.; Matsui, T.; Ozaki, S.; Watanabe, Y.; Fukuzumi, S.
Mechanisms of Sulfoxidation Catalyzed by High-Valent
Intermediates of Heme Enzymes:ꢀ Electron-Transfer vs O-xygen-
Transfer Mechanism. J. Am. Chem. Soc. 1999, 121, 9497.
(17) Khenkin, A. M.; Leitus, G.; Neumann, R. Electron
Transfer−Oxygen Transfer Oxygenation of Sulfides Catalyzed by
the H5PV2Mo10O40 Polyoxometalate. J. Am. Chem. Soc. 2010, 132,
11446.
(31) For para-cyano thioanisole a k2 of 0.044 M-1 s-1 is reported
in ref. 20 which, under our conditions corresponds to
k=k2×[Substrate] = 0.04 s-1 to be compared with 0.08 s-1. It has to
be remarked that the k value reported in ref. 20 was obtained at
much lower substrate concentrations.
(32) Oh, N. Y.; Suh, Y.; Park, M. J.; Seo, M. S.; Kim, J.; Nam, W.
Mechanistic insight into alcohol oxidation by high-valent iron-
oxo complexes of heme and non heme ligands Angew. Chem. Int.
Ed. 2005, 44, 4235.
(33) For benzyl alcohol a k2 of 0.10 M-1 s-1 can be calculated
from data in ref. 32 which, under our conditions corresponds to
k=k2×[Substrate] = 0.28 s-1 to be compared with 0.13 s-1. It has to
be remarked that the k value in reported in ref 10 was obtained
in lower concentrations.
(18) Kumar, A.; Goldberg, I.; Botoshansky, M.; Buchman, Y.;
Gross, Z. Oxygen Atom Transfer Reactions from Isolated (Oxo)
ACS Paragon Plus Environment