Molecules 2016, 21, 1122
8 of 9
Acknowledgments: D.D.D. thanks the Deutsche Forschungsgemeinschaft (DFG) for the Heisenberg Professorship
Award. A.P. thanks the SINCHEM program for her PhD Grant. SINCHEM is a Joint Doctorate program selected
under the Erasmus Mundus Action 1 Program—FPA 2013-0037.
Author Contributions: M.H. and A.P. performed the experiments. F.Q. and N.T. contributed to results discussion.
D.D.D. designed the experiments. M.H. and D.D.D. wrote the paper. All authors took part in data analysis
and discussion.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
2.
3.
4.
Rouse, J.G.; Van Dyke, M.E. A review of keratin-based biomaterials for biomedical applications. Materials
Kornillowics-Kowalska, T.; Bohacz, J. Biodegradation of keratin waste: Theory and practical aspects.
Lee, C.H.; Kim, M.S.; Chung, B.M.; Leahy, D.J.; Coulombe, P.A. Structural basis for heteromeric assembly and
perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 2012, 19, 707–715. [CrossRef] [PubMed]
Zhou, X.M.; Idler, W.W.; Steven, A.C.; Roop, D.R.; Steinert, P.M. The complete sequence of the human
intermediate filament chain keratin 10. Subdomainal divisions and model for folding of end domain
sequences. J. Biol. Chem. 1988, 263, 15584–15589. [PubMed]
0
5.
6.
7.
O Donnell, J. The complete amino acid sequence of a feather keratin from Emu (Dromaius Novae-Hollandiae).
Aust. J. Bioi. Sci. 1973, 26, 415–437. [CrossRef]
Arai, K.M.; Takahashi, R.; Yokote, Y.; Akahane, K. Amino-acid sequence of feather keratin from fowl.
Steinert, P.M.; Rice, R.H.; Roop, D.R.; Trus, B.L.; Steven, A.C. Complete amino acid sequence of a mouse
epidermal keratin subunit and implications for the structure of intermediate filaments. Nature 1983, 302,
8.
9.
Tonin, C.; Aluigi, A.; Zoccola, M. Characterisation of keratin biomass from butchery and wool industry
wastes. J. Mol. Struct. 2009, 938, 35–40.
Sierpinski, P.; Garrett, J.; Ma, J.; Apel, P.; Klorig, D.; Smith, T.; Koman, L.A.; Atala, A.; Van Dyke, M. The use
of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral
10. Saul, J.M.; Ellenburg, M.D.; de Guzman, R.C.; van Dyke, M. Keratin hydrogels support the sustained release
of bioactive ciprofloxacin. J. Biomed. Mater. Res. A 2011, 98A, 544–553. [CrossRef] [PubMed]
11. Hengchang, M.; Zhikang, B.; Guobin, H.; Ningning, Y.; Yufei, X.; Zengming, Y.; Wei, C.; Yuan, M.
Nanoparticulate palladium catalyst stabilized by supported on feather keratin for Suzuki coupling reaction.
Chin. J. Catal. 2013, 52, 578–584.
12. Karthikeyan, R.; Balaji, S.; Sehgal, P.K. Industrial applications of keratins—A review. J. Sci. Ind. Res. 2007, 52,
710–715.
13. Luzzio, F.A. The Henry reaction: Recent examples. Tetrahedron 2001, 57, 915–945. [CrossRef]
14. Palomo, C.; Oiarbide, M.; Laso, A. Recent advances in the catalytic asymmetric nitroaldol (Henry) reaction.
Eur. J. Org. Chem. 2007, 2007, 2561–2574. [CrossRef]
15. Boruwa, J.; Gogoi, N.; Saikia, P.P.; Barua, N.C. Catalytic asymmetric Henry reaction. Tetrahedron Asymmetry
16. Sharma, K.K.; Biradar, A.V.; Asefa, T. Substituent- and catalyst-dependent selectivity to aldol or nitrostyrene
products in a heterogeneous base-catalyzed Henry reaction. ChemCatChem 2010, 2, 61–66. [CrossRef]
17. Ballini, R.; Gabrielli, S.; Palmieri, A.; Petrini, M. Nitroalkanes as key compounds for the synthesis of amino
derivatives. Curr. Org. Chem. 2011, 15, 1482–1506. [CrossRef]
18. Kühbeck, D.; Saidulu, G.; Reddy, K.R.; Díaz, D.D. Critical assessment of the efficiency of chitosan biohydrogel
beads as recyclable and heterogenous organocatalyst for C-C bond formation. Green Chem. 2012, 14, 378–392.
19. Kühbeck, D.; Dhar, B.B.; Schön, E.-M.; Cativiela, C.; Gotor-Fernández, V.; Díaz, D.D. C-C bond formation
catalyzed by natural gelatin and collagen proteins. Beilstein J. Org. Chem. 2013, 9, 1111–1118.