plane and are bridged by arsenate tetrahedra, which share all four
oxygen atoms with three separate chains of iron octahedra.
The hydroxide group is present on the bridging Fe–O–Fe
oxygen. This bridging oxygen possesses tetrahedral co-ordination
as it is also one of six oxygen atoms that co-ordinates to the
described in this article show only weak cooperative magnetic
interactions between the metal centres, i.e. antiferromagnetic
ordering only at low temperatures, below 50 K.
Acknowledgements
˚
lithium ion within the range 1.97(1)–2.82(5) A. This close packed
−
3
arrangement results in the large calculated density of 3.906 g cm ,
despite the pore like nature of the structure (Fig. 8). The hydrogen
atom H1 forms a bifurcated hydrogen bonding link to oxygen
atoms O2 and O3, cutting across the channels viewed parallel to
the b axis. Details of these bonds are given in Table S1 (see ESI).†
We thank EPSRC for partial studentship funding for SBW and
Dr Mark Light for help with SXD data collection and analysis.
Notes and references
1
A. K. Cheetham, G. Ferey and T. Loiseau, Angew. Chem., Int. Ed.,
999, 38, 3268 and references therein.
R. Kneip, H. Engelhardt and C. Hauf, Chem. Mater., 1998, 10(10),
930.
1
2
2
3
4
M. T. Weller and S. B. Wiggin, J. Am. Chem. Soc., 2005, 127(49), 17172.
C. N. R. Rao, E. V. Sampathkumaran, R. Nagarajan, G. Paul, J. N.
Behera and A. Choudhury, Chem. Mater., 2004, 8, 1441.
J. N. Behera, A. A. Ayi and C. N. R. Rao, Chem. Commun., 2004, 968.
W. Harrison, Int. J. Inorg. Mater., 2001, 3(2), 179.
A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Elec-
trochem. Soc., 1997, 144, 1188.
5
6
7
8
9
B. Speiser and C. Kistler, Crop Protection, 2002, 21(5), 389.
P. Bonnet, J. M. M. Millet, C. Leclercq and J. C. Vedrine, J. Catal.,
1
996, 158(1), 128.
1
1
0 J. L. Shaw, A. C. Wright, R. N. Sinclair, G. K. Marasinghe, D. Holland,
M. R. Lees and C. R. Scales, J. Non-Cryst. Solids, 2004, 245, 345–346.
1 S. Chakrabarti and S. Natarajan, Angew. Chem., Int. Ed., 2002, 41(7),
1
224.
1
1
2 S. Ekambaram and S. Sevov, Inorg. Chem., 2000, 39(11), 2405.
3 T. Berrocal, J. Mesa, J. Pizarro, M. Urtiaga, M. Arriortua and J. Rojo,
J. Solid State Chem., 2006, 179(6), 1659.
Fig. 8 Structure of LiFeAsO
scheme as per previous figures; lithium ions are medium grey spheres.
4
·H
2
O looking down the a direction. Shading
14 S.-H. Luo, Y.-C. Jiang, S.-L. Wang, H.-M. Kao and K.-H. Lii, Inorg.
Chem., 2001, 40(21), 5381.
1
5 B. Baz a´ n, J. Mesa, J. Pizarro, A. Pena, M. Arriortua and J. Rojo,
Z. Anorg. Allg. Chem., 2005, 631(11), 2026.
3
0
The structure has a phosphate analogue, and is also isostruc-
tural with the naturally occurring mineral amblygonite. Also
reported are stoichiometrically identical manganese equivalents of
16 S. Chakrabarti, M. Green and S. Natarajan, Solid State Sci., 2002, 4(3),
4
05.
1
7 V. K. Rao, K. C. Kam, A. K. Cheetham and S. Natarajan, Solid State
Sci., 2006, 8(6), 692.
8 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32(4), 837.
19 G. Sheldrick, SHELX-97 [Includes SHELXS97, SHELXL97], Pro-
grams for Crystal Structure Analysis (Release 97-2), 1997, University
of G o¨ ttingen, G o¨ ttingen, Germany.
0 G. Sheldrick, SADABS. Version 2.10, 2003, Bruker AXS Inc., Madison,
WI, USA.
31
32
both the arsenate and phosphate systems, with similar chains
of vertex sharing MO
, M = Mn, octahedra linked in an identical
manner by the TO
1
6
4
, T = P, As, tetrahedra. However in these
manganese analogues the octahedra are strongly distorted due to
the presence of the Jahn–Teller ion Mn(III).
2
2
2
1 H. G. Giesber, M. B. Korzenski, W. T. Pennington and J. W. Kolis, Acta
Crystallogr., Sect. C, 2000, C56, 399.
Conclusions
2 C.-H. Wu, T.-C. Chen and S.-L. Wang, Acta Crystallogr., Sect. C, 1996,
C52, 1326.
Several new iron arsenate framework structures have been syn-
thesised and their structures elucidated, considerably expanding
this class of materials. The framework iron arsenates adopt
structures that contrast strongly with those typical of the much
more highly developed iron phosphate chemistry. This behaviour
23 S.-L. Wang, J.-C. Horng and Y.-H. Lee, J. Chem. Soc., Dalton Trans.,
1
994, 1825–1829.
2
2
2
2
4 Y.-C. Liao, S.-H. Luo, S.-L. Wang, H.-M. Kao and K.-H. Lii, J. Solid
State Chem., 2000, 155(1), 37.
5 M. Korzenski, G. Schimek and J. Kolis, Eur. J. Solid State Inorg. Chem.,
1998, 35(3), 143.
6 M. Riou-Cavallec, J.-M. Greneche, D. Riou and G. Ferey, Chem.
Mater., 1998, 10(9), 2434.
7 S. Mahesh, M. A. Green and S. Natarajan, J. Solid State Chem., 2002,
165, 334–344.
28 M. Cavellec, D. Riou, C. Ninclaus, J. M. Greneche and G. Ferey,
Zeolites, 1996, 17(3), 250–260.
9 B. Baz a´ n, J. Mesa, J. Pizarro, A. Go n˜ i, L. Lezama, M. Arriortua and
is mainly as a result of the prevalence of protonated As(O,OH)
4
tetrahedra in these materials; phosphate in polyhedral frameworks
almost invariably links through simple P–O–M bridges, with
rarer occurrences of terminal P–OH groups. The presence of
such framework-terminating As–OH groups in several of the
iron arsenates reported in this work promulgates other structural
features in these compounds, such as strong hydrogen bonds
2
T. Rojo, Inorg. Chem., 2001, 40(22), 5691–5694.
30 M. Lindberg and W. Pecora, Am. Mineral., 1955, 40(11–12), 952–
2
−
2+
966.
that cross-link polyhedral units, as in [Fe
6
As
7
O
31
H
5
] (dabco )
3
3
1 M. Aranda, J. Attfield and S. Bruque, J. Chem. Soc., Chem. Commun.,
and hydrogen bonds to templating cationic amine units, as
1
991, 604–606.
2
−
2+
in [Fe
6
As
8
O
32
H
4
] (1,4-butanediamininium )·2H
2
O. In common
2 M. Aranda, J. Attfield and S. Bruque, Angew. Chem., Int. Ed. Engl.,
1992, 31(8), 1090–1092.
with many transition metal containing frameworks the materials
This journal is © The Royal Society of Chemistry 2007
Dalton Trans., 2007, 2935–2941 | 2941