Organic Letters
Letter
TS−B2 (ΔG = 24 kcal·mol−1), giving rise to the endoergic
intermediate C2 (ΔG = 21.9 kcal·mol−1). The latter leads to the
thermodynamically stable product D2 (ΔG = −67.4 kcal·mol−1),
through a series of prototropic rearrangements. In analogy, the
tricationic pathway starts with A3−CO−CN−CN, furnishing the
E isomer B3. In this case, due to the higher electrophilicity of the
diprotonated nitrilium, the cyclization reaction occurs through a
low lying transition state (TS−B3, ΔG = 12.9 kcal·mol−1), giving
rise at first to the product C3 and finally to D3.
In summary, the use of TfOH as a superacid induces a double
protonation, which excluded the monocationic pathway. The
dicationic pathway, possessing a monoprotonated nitrile, is in
accordance with the required experimental conditions (heating at
150 °C) and observed reaction times (3 min). The tricationic
pathway has a rate limiting step barrier of 12.9 kcal·mol−1
implying that the reaction should occur at room temperature.
Thelatter result isalso inaccordance withthe literature reports by
Shudo, where the cyclization occurred at room temperature.
Thus, no double protonation of nitrile is at stake in our system,
due to the presence of the push−pull functional group in the
molecule.
In conclusion, an efficient three-step synthesis of 4-amino-2-
unsubstituted quinolines has been developed starting from
anthranilonitriles. Complete regioselectivity was observed, open-
ing access to a wide range of quinoline derivatives despite of the
substitution pattern. This is a versatile strategy for the de novo
synthesis of the pyridine ring in such compounds, without the
need of a protecting or directing group strategy. Theoretical
investigations revealed that a mono-protonated nitrilium species
is at stake in this reaction. Limitations of this protocol for the
moment have been identified on heterocyclic scaffolds, and the
extension to other heterocycles is under investigation.
8671. (b) Czarnecki, P.; Plutecka, A.; Gawronski, J.; Kacprzak, K. Green
Chem. 2011, 13, 1280−1287. (c) Huang, Y.; Xu, S.; Lin, V. S.-Y.
ChemCatChem 2011, 3, 131−134. (d) Lian, M.; Li, Z.; Du, J.; Meng, Q.;
Gao, Z. Eur. J. Org. Chem. 2010, 34, 6525−6530. (e) Song, C. E. Cinchona
Alkaloids in Synthesis and Catalysis; Wiley-VCH Verlag GmbH & Co.:
Weinheim, Germany, 2009.
(3) Oliveri, V.; Vecchio, G. Mini-Rev. Med. Chem. 2016, 16, 1185−1197.
(4) Analgesics: (a) Shinkai, H.; Ito, T.; Iida, T.; Kitao, Y.; Yamada, H.;
Uchida, I. J. Med. Chem. 2000, 43, 4667−4677. Acetylcholinesterase
inhibitors (b) Steinberg, G. M.; Mednick, M. L.; Maddox, J.; Rice, R.;
Cramer, J. J. Med. Chem. 1975, 18, 1056−1061.
(5) Yi, F.; Zhang, S.; Huang, Y.; Zhang, L.; Yi, W. Eur. J. Org. Chem.
2017, 1, 102−110.
(6)Schmidt, A.;Munster, N.;Dreger, A. Angew. Chem., Int. Ed.2010,49,
̈
2790−2793.
(7) Wezeman, T.; Zhong, S.; Nieger, M.; Brase, S. Angew. Chem., Int. Ed.
̈
2016, 55, 3823−3827.
(8) (a) Carotti, A.; Altomare, C.; Savini, L.; Chiasserini, L.; Pellerano,
C.; Mascia, M. P.; Maciocco, E.; Busonero, F.; Mameli, M.; Biggio, G.;
Sanna, E. Bioorg. Med. Chem. 2003, 11, 5259−5272. (b) Leyva, E.;
́
Monreal, E.; Hernandez, A. J. Fluorine Chem. 1999, 94, 7−10.
(9) Ranu, B. C.; Hajra, A.; Dey, S. S.; Jana, U. Tetrahedron 2003, 59,
813−819.
́
(10) Marco-Contelles, J.; Perez-Mayoral, E.; Samadi, A.; Carreiras, M.
D. C.; Soriano, E. Chem. Rev. 2009, 109, 2652−2671.
(11) (a) Song, R.; Han, Z.; He, Q.; Fan, R. Org. Lett. 2016, 18, 5328−
5331. (b) Khong, S.; Kwon, O. J. Org. Chem. 2012, 77, 8257−8267.
(c) Venkatesan, H.; Hocutt, F. M.; Jones, T. K.; Rabinowitz, M. H. J. Org.
Chem. 2010, 75, 3488−3491.
(12) Hofle, G.; Hollitzer, O.; Steglich, W. Angew. Chem., Int. Ed. Engl.
̈
1972, 11, 720−722.
(13) Theeraladanon, C.; Arisawa, M.; Nishida, A.; Nakagawa, M.
Tetrahedron 2004, 60, 3017−3035.
(14) Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.;
Mirkhani, V.; Anvar, S.; Mirjafari, A. Synlett 2010, 2010, 3104−3112.
(15)Gronnier, C.;Boissonnat, G.;Gagosz,F.Org.Lett. 2013,15,4234−
4237.
ASSOCIATED CONTENT
* Supporting Information
■
(16)(a)Chattopadhyay, S.K.;Dey,R.;Biswas, S. Synthesis2005,1083−
1086. (b) Fischer, G. W. J. Heterocycl. Chem. 1994, 31, 1529−1534.
(c) Sinsky, M. S.; Bass, R. G. J. Heterocycl. Chem. 1984, 21, 759−768.
(17) (a) Ai, Y.; Liang, Y.-J.; Liu, J.-C.; He, H.-W.; Chen, Y.; Tang, C.;
Yang, G.-Z.;Fu, L.-W. Eur. J. Med.Chem. 2012,47,206−213. (b)Doucet-
Personeni, C.; Bentley, P. D.; Fletcher, R. J.; Kinkaid, A.; Kryger, G.;
Pirard, B.;Taylor, A.;Taylor, R.;Taylor, J.; Viner, R.;Silman, I.;Sussman,
J. L.; Greenblatt, H. M.; Lewis, T. J. Med. Chem. 2001, 44, 3203−3215.
(c) Veronese, A. C.; Callegari, R.; Morelli, C. F. Tetrahedron 1995, 51,
12277−12284.
(18) Colla, A.; Martins, M. A. P.; Clar, G.; Krimmer, S.; Fischer, P.
Synthesis 1991, 1991, 483−486.
(19) Martins, M. A. P.; Guarda, E. A.; Frizzo, C. P.; Marzari, M. R. B.;
Moreira, D. N.;Zanatta, N.; Bonacorso, H. G. Monatsh. Chem. 2008, 139,
1321−1327.
S
TheSupportingInformationisavailablefreeofchargeontheACS
Experimental procedures, characterization data, copies of
1H NMR and 13C NMR of new compounds, and computed
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(20) Med
Tetrahedron Lett. 2005, 46, 7817−7821.
(21) The low yields obtained by Med
́
ebielle, M.; Hohn, S.; Okada, E.; Myoken, H.; Shibata, D.
Notes
́
ebielle could be due to the
instability of difluorochloroketones, following our observations on
trichloroketones.
(22) Saari, R.; Torma, J. C.;Nevalainen, T. Bioorg. Med. Chem. 2011, 19,
̈
̈
The authors declare no competing financial interest.
939−950.
(23) Olah, G. A.; Prakash, G. K. S.; Sommer, J.; Molnar, A. Superacid
Chemistry, 2nd ed.; Wiley VCH: NJ, 2009.
ACKNOWLEDGMENTS
Theauthors are indebtedtothe French Minister
for a grant to H.L. CCIR-ICBMS (UCBL) is gratefully
acknowledged for the allocation of computational resources.
■
̀
e dela Recherche
(24) Sato, Y.; Yato, M.; Ohwada, T.; Saito, S.; Shudo, K. J. Am. Chem.
Soc. 1995, 117, 3037−3043.
(25) Double bond isomerization occurs at room temperature, as
observed experimentally by 1H NMR spectroscopy, thus no transition
state has been computed for this step.
REFERENCES
■
(1) Deshpande, S.; Kuppast, B. Med. Chem. 2016, 6, 1−11.
(2) Recent selected examples: (a) Zhou, J.; Jia, L.-N.; Wang, Q.-L.;
Peng, L.; Tian, F.; Xu, X.-Y.; Wang, L.-X. Tetrahedron 2014, 70, 8665−
D
Org. Lett. XXXX, XXX, XXX−XXX