Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
2966
Y.-j. Shang et al. / Journal of Organometallic Chemistry 693 (2008) 2963–2966
room temperature over night. The precipitate was removed by fil-
tration and washed with water. After dried, the aldoxime was ob-
tained in 98% yield.
HRMS (ESI): 239.07 ([M]+). Anal. Calc. for C12H14ClNO4: C, 60.13;
H, 5. 89; N, 5.84. Found: C, 60.10; H, 5.86; N, 5.82%.
Aldoxime (1 mmol) and chlorosuccinimide (NCS, 1 mmol) were
stirred in flask containing dry dichloromethane (5 mL). The reac-
tion mixture was refluxed at 30 °C for 40 min. The ethynylferro-
cene (1 mmol) was added. Triethylamine (1.4 mL in 3 mL of
CH2Cl2) was added dropwise over about 1.5 h and the mixture
was stirred overnight at room temperature. The complete con-
sumption of starting materials was judged by TLC analysis. After
stirring overnight, the residue was extracted with dichlorometh-
ane (3 Â 3 mL) and washed with water for three times. The com-
bined organic layers were dried with anhydrous magnesium
sulfate. The solution was filtered and the solvents were removed
in vacuo. The residue was purified by flash column chromatogra-
phy on alumina gel to afford red crystals in 87% yield. M.p. 200–
4. Supplementary material
CCDC 292945 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Acknowledgement
This work was financially supported by the Natural Science
Foundation of Education Administration of Anhui Province
(2006kj117B and KJ2008A064).
202 °C. IR (KBr): 1612 (C@N), 1560 (C@C) cmÀ1
.
1H NMR
References
(300 MHz, CDCl3): d = 8.33 (s, 1H, C6H4), 8.06 (dd, J = 6.3, 7.7 Hz,
2H, C6H4), 7.66 (t, J = 7.8 Hz, 1H, C6H4), 6.67 (s, 2H, C3HON), 4.85
(s, 4H, C5H4), 4.49 (s, 4H, C5H4), 4.22 (s, 10H, C5H5). 13C NMR (75
MHz, CDCl3): d = 162.0, 137.1, 133.6, 128.9, 127.8, 127.5, 124.3,
95.0, 69.3, 65.5. EIMS: m/z = 580.1 (M+). Anal. Calc. for C32H24Fe2-
N2O2: C, 66.20; H, 4.14; N, 4.82. Found: C, 66.18; H, 4.12; N, 4.80%.
[1] (a) R.F. Heck, Acc. Chem. Res. 12 (1972) 139;
(b) R.F. Heck, Org. React. 27 (1982) 345;
(c) G.D. Davis Jr., A. Hallberg, Chem. Rev. 89 (1989) 1433;
(d) C.H. Oh, S.H. Jung, S.Y. Bang, D.I. Park, Org. Lett. 4 (2002) 3325;
(e) A. Salcedo, L. Neuville, C. Rondot, P. Retailleau, Org. Lett. 10 (2008) 857;
(f) R. Abu-Reziq, D. Wang, M. Post, H. Alper, Chem. Mater. 20 (2008) 2544;
(g) K.E. Plass, X. Liu, B.S. Brunschwig, N.S. Lewis, Chem. Mater. 20 (2008) 2228;
(h) J.L. Henderson, A.S. Edwards, M.F. Greaney, Org. Lett. 9 (2007) 5589.
[2] (a) A.F. Littke, G.C. Fu, J. Org. Chem. 64 (1999) 10;
(b) A.F. Littke, G.C. Fu, J. Am. Chem. Soc. 123 (2001) 6989.
[3] A. Ehrentraut, A. Zopf, M. Beller, Synlett 11 (2000) 1589.
[4] M. Jorgensen, S. Lee, X. Liu, J.P. Wolkowski, J.F. Hartwig, J. Am. Chem. Soc. 124
(2002) 12557.
[5] N.A. Bumagin, V.V. Bykov, Tetrahedron 53 (1997) 14437.
[6] M. Beller, H. Fischer, W.A. Herrmann, K. Ofele, C. Brossmer, Angew. Chem., Int.
Ed. 34 (1995) 1848.
[7] M. Feuerstein, D. Laurenti, H. Doucet, M. Santelli, Synthesis 15 (2001)
2320.
3.3. Preparation of 1,3-bis-(5-ferrocenylisoxazole-3-yl) benzene-
derived palladium(II) acetate complex 5
Compound 5 was synthesized according to the method de-
scribed by Hartshorn and Steel. A solution of 1,3-bis-(5-ferroceny-
lisoxazole-3-yl) benzene 4 (1.5 mmol) and palladium acetate
(1.5 mmol) in acetic acid (15 mL) was heated under reflux for
16 h in a round-bottomed flask. The precipitate was removed by
filtration and washed with water. After dried, complex 5 was ob-
[8] (a) R. Bernini, S. Cacchi, G. Fabrizi, G. Forte, S. Niembro, F. Petrucci, Org. Lett. 10
(2008) 561;
tained in 85% yield. IR (KBr): 1601 (C@N), 1523 (C@C) cmÀ1 1H
.
(b) B.M. Suijkerbuijk, J.M. Herreras, S.D. Martínez, G. van Koten,
Organometallics 27 (2008) 534;
(c) V. Montoya, J. Pons, V. Branchadell, J. Garcia-Antón, M. Font-Bardia, J. Ros,
Organometallics 27 (2008) 1084;
NMR (300 MHz, DMF-d6): d = 8.68 (dd, J = 6.3, 7.7 Hz, C6H4), 7.98
(t, J = 7.8 Hz, 1H, C6H4), 7.47 (s, 2H, C3HON), 5.14 (s, 4H, C5H4),
4.73 (s, 4H, C5H4), 4.40 (s, 10H, C5H5), 3.09 (s, 3H, CH3CO), 2.92
(s, 3H, CH3CO). 13C NMR (75 MHz, DMF-d6): d = 172.2, 171.7,
162.1, 134.2, 129.9, 129.7, 127.4, 124.1, 96.5, 69.9, 66.8. EIMS:
804.2 ([M+H]+). Anal. Calc. for C36H29O6N2Fe2Pd: C, 53.77; H,
3.61; N, 3.48. Found: C, 53.75; H, 3.59; N, 3.47%.
(d) B. Punji, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 46 (2007) 11316;
(e) S. Haneda, Z. Gan, K. Eda, M. Hayashi, Organometallics 26 (2007) 6551.
[9] J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principles and Applications of
Organometallic Chemistry,2nd ed., UniversityScience Books,MillValley,CA, 1987.
[10] (a) Y.J. Shang, C.L. Fan, M.G. Li, C.Y. Zheng, Appl. Organomet. Chem. 20 (2006)
626;
(b) Y.J. Shang, Y.G. Wang, Tetrahedron Lett. 43 (2002) 2247;
(c) Y.J. Shang, W.G. Shou, Y.G. Wang, Synlett 7 (2003) 1064;
(d) Y.J. Shang, Y.G. Wang, Synthesis 12 (2002) 1663.
[11] (a) M.A. Arai, T. Arai, H. Sasai, Org. Lett. 1 (1999) 1795;
(b) M.A. Arai, M. Kuraishi, T. Arai, H. Sasai, J. Am. Chem. Soc. 123 (2001) 2907;
(c) T. Shinohara, M.A. Arai, K. Wakita, T. Arai, H. Sasai, Tetrahedron Lett. 44
(2003) 711;
3.4. General procedure for the Heck coupling reaction in an aqueous
solution
Under an argon atmosphere, a 10 mL round-bottomed flask was
(d) C. Muthiah, M.A. Arai, T. Shinohara, S. Takizawa, H. Sasai, Tetrahedron Lett.
44 (2003) 5201;
charged with palladium complex
5 (1–5 mol%), aryl halide
(1 mmol), olefin (1.5 mmol), NaOAc (2 mmol), tetrabutylammo-
nium bromide (1 mmol) and aqueous solutions (4 mL). The mix-
ture was stirred at 100–140 °C for the 6-24 h. The reaction
progress was analysed by GLC. The mixture was extracted with
EtOAc (3 Â 15 mL), dried over MgSO4, concentrated in vacuo and
purified by flash chromatography on silica gel. All the prepared
products except 6 K had been reported previously and were char-
acterized by comparison with their reported data. Physical, analyt-
ical and spectroscopic data of newly synthesized compound
followed:
(e) K. Wakita, G.B. Bajracharya, M.A. Arai, S. Takizawa, T. Suzuki, H. Sasai,
Tetrahedron: Asymmetry 18 (2007) 372.
[12] (a) R.M. Moreno, A. Bueno, A. Moyano, J. Organomet. Chem. 660 (2002) 62;
(b) A. Eds. Meijera, F. Diederich, Metal-Catalyzed Cross-coupling Reactions,
Wiley-VCH, Weinheim, 2004.
[13] (a) M.T. Reetz, S.R. Waldvogel, R. Goddard, Tetrahedron Lett. 38 (1997)
5967;
(b) I.G. Jung, S.U. Son, K.H. Park, Y.K. Chung, Organometallics 22 (2003)
4715;
(c) I.D. Kostas, B.R. Steele, S.V. Amosova, Tetrahedron 59 (2003) 3467.
[14] (a) B.H. Lipshutz, B.R. Taft, Org. Lett. 10 (2008) 1329;
(b) B.H. Lipshutz, T.B. Petersen, A.R. Abela, Org. Lett. 10 (2008) 1333;
(c) B.H. Lipshutz, G.T. Aguinaldo, S. Ghorai, K. Voigtritter, Org. Lett. 10 (2008)
1325;
(E)-2-chloro-5-(acrylic acid n-Butyl ester) pyridine (6k): m.p. 53–
54 °C. IR (KBr): 1713 (C@O), 1640 (C@C) cmÀ1
.
1H NMR (300 MHz,
(d) Z. Zhang, Z. Zha, C. Gan, C. Pan, Y. Zhou, Z. Wang, M.M. Zhou, J. Org. Chem.
71 (2006) 4339;
CDCl3) d = 8.51 (s, 1H, C5H3N), 7.82–7.78 (dd, J = 2.5, 8.4 Hz, 1H,
C5H3N), 7.65 (d, J = 16.11 Hz, 1H, CH@CH), 7.37 (d, J = 8.37 Hz,
1H, C5H3N), 6.51 (d, J = 15.57 Hz, 1H, CH@CH), 4.22 (t, 2H,
COCH2CH2CH2CH3), 1.73–1.64 (m, 2H, COCH2CH2CH2CH3), 1.49–
(e) B. Liang, M. Dai, J. Chen, Z. Yang, J. Org. Chem. 70 (2005) 391.
[15] J.P. Genet, M. Savignac, J. Organomet. Chem. 576 (1999) 305.
ꢀ
[16] Crystallographic data for 4: space group P1, a = 11.8066(3) Å, b = 21.3730(18) Å,
c = 11.2852(9) Å,
T = 293(2) K, Z = 4.
a = 90.00(2)°, b = 116.79(2)°, c
= 90.00(2)°, V = 2542.2(2) Å3,
1.42
(m,
2H,
COCH2CH2CH2CH3),
0.98–0.94
(t,
3H,
[17] C.M. Hartshorn, P.J. Steel, Organometallics 17 (1998) 3487.
[18] G.A. Grase, R. Singh, E.D. Stevens, S.P. Nolan, J. Organomet. Chem. 687 (2003)
269.
COCH2CH2CH2CH3); 13C NMR (75 MHz, CDCl3) d: 166.1, 152.7,
149.5, 139.2, 136.5, 129.3, 124.5, 121.2, 64.8, 30.7, 19.1, 13.7.