Journal of the American Chemical Society
Communication
(17) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.;
Grubbs, R. H.; Bansleben, D. A. Science 2000, 288, 1750.
(18) Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.;
Brookhart, M. J. Am. Chem. Soc. 2000, 122, 6686.
(19) Mecking, S. Coord. Chem. Rev. 2000, 203, 325.
(20) Guan, Z.; Popeney, C. S. Top. Organometal. Chem. 2009, 26,
179.
PMAO-IP and found to produce moderately branched PE with
narrow molecular weight distributions (Mw/Mn ≤ 1.22) at
temperatures up to 100 °C at 15 psi of ethylene pressure. To
circumvent issues related to elevated polymerization temper-
atures, the thermal stability of catalyst 2b was evaluated using
increased ethylene pressures (100 psi) and found to exhibit
virtually no catalyst decomposition at temperatures as high as
90 °C for polymerization times up to 20 min. The PE produced
demonstrated well-defined molecular weight distributions (Mw/
Mn ≤ 1.31), was of high molecular weight (Mn > 600 000 g/
mol), and was moderately branched (63−75 branches per 1000
carbons). Stable turnover frequencies and a nearly linear
increase in productivity were also observed at 100 °C for
polymerizations times ≤15 min, though extended reaction
times did clearly show that catalyst decomposition could be
problematic. The enhanced thermal stability of catalyst 2b, as
well as its ability to make high molecular weight PE with
narrow molecular weight distributions, provides a significant
advance toward developing Ni- and Pd-based catalysts suitable
for industrially used gas-phase polymerizations.
(21) Xie, T. Y.; Mcauley, K. B.; Hsu, J. C. C.; Bacon, D. W. Ind. Eng.
Chem. Res. 1994, 33, 449.
(22) Liu, F.-S.; Hu, H.-B.; Xu, Y.; Guo, L.-H.; Zai, S.-B.; Song, K.-M.;
Gao, H.-Y.; Zhang, L.; Zhu, F.-M.; Wu, Q. Macromolecules 2009, 42,
7789.
(23) Berkefeld, A.; Mecking, S. J. Am. Chem. Soc. 2009, 131, 1565.
(24) Popeney, C. S.; Rheingold, A. L.; Guan, Z. Organometallics
2009, 28, 4452.
(25) Lee, L. S.; Ou, H. J.; Hsu, H. F. Fluid Phase Equilib. 2005, 231,
221.
(26) Gao, H. Y.; Hu, H. B.; Zhu, F. M.; Wu, Q. Chem. Commun.
2012, 48, 3312.
(27) Camacho, D. H.; Salo, E. V.; Ziller, J. W.; Guan, Z. B. Angew.
Chem., Int. Ed. 2004, 43, 1821.
(28) Meinhard, D.; Wegner, M.; Kipiani, G.; Hearley, A.; Reuter, P.;
Fischer, S.; Marti, O.; Rieger, B. J. Am. Chem. Soc. 2007, 129, 9182.
(29) Moody, L. S.; Mackenzie, P. B.; Killian, C. M.; Lavoie, G. G.;
Ponasik, J. A., Jr.; Barrett, A. G. M.; Smith, T. W.; Pearson, J. C.
Catalysts containing n-pyrrolyl substituted nitrogen donors for
polymerization of olefins. WO2000050470A2, 2000.
(30) Liu, H.; Zhao, W. Z.; Hao, X. A.; Redshaw, C.; Huang, W.; Sun,
W. H. Organometallics 2011, 30, 2418.
ASSOCIATED CONTENT
* Supporting Information
Synthesis and characterization of 1b, 2
■
S
̧
a, and 2b, and
polymerization data for 2a and 2b. This material is available
(31) Cherian, A. E.; Lobkovsky, E. B.; Coates, G. W. Chem. Commun.
2003, 2566.
(32) Berthon-Gelloz, G.; Siegler, M. A.; Spek, A. L.; Tinant, B.; Reek,
J. N.; Marko, I. E. Dalton Trans. 2010, 39, 1444.
(33) See Supporting Information for complete ethylene polymer-
ization data for catalysts 2a.
(34) Polymerization times extending beyond 20 min were
performed; however, polymer precipitation from solution became
problematic making TOF and productivity calculations unreliable.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors wish to acknowledge the Army Research Office
(Contract No. W911NF-1-0127) and the University of
Tennessee for their financial support of this work.
REFERENCES
■
(1) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283.
(2) Zohuri, G. H.; Albahily, K.; Schwerdtfeger, E. D.; Miller, S. A.
Polymer Science: A Comprehensive Reference; Elsevier: 2012; Vol. 3.
(3) Alt, H. G.; Koppl, A. Chem. Rev. 2000, 100, 1205.
̈
(4) Chen, E. Y. X.; Marks, T. J. Chem. Rev. 2000, 100, 1391.
(5) Coates, G. W. Chem. Rev. 2000, 100, 1223.
(6) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100,
1169.
(7) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414.
(8) Killian, C. M.; Tempel, D. J.; Johnson, L. K.; Brookhart, M. J. Am.
Chem. Soc. 1996, 118, 11664.
(9) Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479.
(10) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267.
(11) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am.
Chem. Soc. 1998, 120, 888.
(12) Popeney, C. S.; Guan, Z. J. Am. Chem. Soc. 2009, 131, 12384.
(13) Gates, D. P.; Svejda, S. A.; Onate, E.; Killian, C. M.; Johnson, L.
̃
K.; White, P. S.; Brookhart, M. Macromolecules 2000, 33, 2320.
(14) Guan, Z.; Cotts, P. M.; McCord, E. F.; McLain, S. J. Science
1999, 283, 2059.
(15) Anselment, T. M. J.; Vagin, S. I.; Rieger, B. Dalton Trans. 2008,
4537.
(16) Coates, G. W.; Hustad, P. D.; Reinartz, S. Angew. Chem., Int. Ed.
2002, 41, 2236.
D
dx.doi.org/10.1021/ja408905t | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX