Journal of the American Chemical Society
Page 4 of 5
AUTHOR INFORMATION
1
2
3
4
Corresponding Authors
tokyo.ac.jp (T.A.)
(K.O.);
aida@macro.t.u-
5
6
7
Notes
The authors declare no competing financial interests.
8
9
ACKNOWLEDGMENT
This work was partially supported by the Grant-in-Aid for
Young Scientists (B) (26810046) to K.O.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Gullotti, E.; Yeo, Y. Mol. Pharmaceutics 2009, 6, 1041.
(2) Wike-Hooley, J. L.; Haveman, J.; Reinhold, H. S. Radiother. Oncol.
1984, 2, 343.
(3) Pellegatti, P.; Raffaghello, L.; Bianchi, G.; Piccardi, F.; Pistoia, V.; Di
Virgilio, F. PLoS One 2008, 3, e2599.
(4) Trabanelli, S.; Očadlíková, D.; Gulinelli, S.; Curti, A.; Salvestrini, V.;
Vieira, R. de P.; Idzko, M.; Di Virgilio, F.; Ferrari, D.; Lemoli, R. M. J. Im-
munol. 2012, 189, 1303.
(5) (a) Zhu, C.-L.; Lu, C.-H.; Song, X.-Y.; Yang, H.-H.; Wang, X.-R. J.
Am. Chem. Soc. 2011, 133, 1278. (b) He, X.; Zhao, Y.; He, D.; Wang, K.;
Xu, F.; Tang, J. Langmuir 2012, 28, 12909. (c) Mo, R.; Jiand, T.; Di Santo,
R.; Tai, W.; Gu, Z.; Nat. Commun. 2014, 5, 3364.
Figure 5. Confocal laser scanning micrographs (λext = 552 nm;
0–60 min) of Hep3B cells (5.0 × 103 cells/chamber) fluores-
cently labelled with CellBrite Orange in HBSS (pH 7.8) con-
taining Trp (5 µM) at 25 °C. Micrographs recorded in the ab-
sence (a) and presence of (b) Gu12BA12 (10 µM) or (c) both
Gu12BA12 (10 µM) and ATP (100 µM). Scale bars = 100 µm.
(d) Normalized contact areas between Hep3B cells and the
substrate in HBSS containing Trp (5 µM) at 25 °C in the ab-
sence (dark blue) and presence of Gu12BA12 (10 µM, red), as
well as in the presence of both Gu12BA12 and ATP (1 or 100 µM,
purple and pink, respectively); calculated from the micrographs
using the ImageJ software.
(6) Naito, M.; Ishii, T.; Matsumoto, A.; Miyata, K.; Miyahara, Y.;
Kataoka, K. Angew. Chem., Int. Ed. 2012, 51, 10751.
(7) Biswas, S.; Kinbara, K.; Niwa, T.; Taguchi, H.; Ishii, N.; Watanabe,
S.; Miyata, K.; Kataoka, K.; Aida, T. Nat. Chem. 2014, 5, 613.
(8) (a) Okuro, K.; Kinbara, K.; Tsumoto, K.; Ishii, N.; Aida, T. J. Am.
Chem. Soc. 2009, 131, 1626. (b) Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee,
E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. Nature 2010, 463, 339. (c)
Okuro, K.; Kinbara, K.; Takeda, K.; Inoue, Y.; Ishijima, A.; Aida, T. Angew.
Chem., Int. Ed. 2010, 49, 3030. (d) Suzuki, Y.; Okuro, K.; Takeuchi, T.;
Aida, T. J. Am. Chem. Soc. 2012, 134, 15273. (e) Uchida, N.; Okuro, K.;
Niitani, Y.; Ling, X.; Ariga, T.; Tomishige, M.; Aida, T. J. Am. Chem. Soc.
2013, 135, 4684. (f) Tamesue, S.; Ohtani, M.; Yamada, K.; Ishida, Y.;
Spruell, J. M.; Lynd, N. A.; Hawker, C. J.; Aida, T. J. Am. Chem. Soc. 2013,
135, 15650. (g) Mogaki, R.; Okuro, K.; Aida, T. Chem. Sci. 2015, 6, 2802.
(h) Hashim, P. K.; Okuro, K.; Sasaki, S.; Hoashi, Y.; Aida, T. J. Am. Chem.
Soc. 2015, 137, 15608. (i) Hatano, J.; Okuro, K.; Aida, T. Angew. Chem., Int.
Ed. 2016, 55, 193.
(9) (a) Sakai, N.; Matile, S. J. Am. Chem. Soc. 2003, 125, 14348. (b)
Hennig, A.; Gabriel, G. J.; Tew, G. N.; Matile, S. J. Am. Chem. Soc. 2008,
130, 10338. (c) Shukla, D.; Schneider, C. P.; Trout, B. L. J. Am. Chem. Soc.
2011, 133, 18713. (d) Yonamine, Y.; Yoshimatsu, K.; Lee, S.-H.; Hoshino,
Y.; Okahata, Y.; Shea, K. J. ACS Appl. Mater. Interfaces 2013, 5, 374. (e)
Gasparini, G.; Bang, E.-K.; Molinard, G.; Tulumello, D. V.; Ward, S.; Kelley,
S. O.; Roux, A.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2014, 136, 6069.
(10) (a) Barker, S. A.; Chopra, A. K.; Hatt, B. W.; Somers, P. J. Carbo-
hydr. Res. 1973, 26, 33. (b) Springsteen, G.; Wang, B. Tetrahedron 2002,
58, 5291.
(11) Novak, J. F.; Trnka, F. Anticancer Res. 2005, 25, 1157.
(12) (a) Hoogenboom, R. Angew. Chem., Int. Ed. 2010, 49, 3415. (b)
Lowe, A. B.; Hoyle, C. E.; Bowman, C. N. J. Mater. Chem. 2010, 20, 4745.
(13) See Supporting Information.
(14) Zhang, X.-F.; Zhang, Y.; Liu, L. J. Lumin. 2014, 145, 448.
(15) Yi, L.; Morgan, J. T.; Ragsdale, S. W. J. Biol. Chem. 2010, 285,
20117.
(16) Qi, X.; Loiseau, F.; Chan, W. L.; Yan, Y.; Wei, Z.; Milroy, L. G.;
Myers, R. M.; Ley, S. V.; Read, R. J.; Carrell, R. W.; Zhou, A. J. Biol. Chem.
2011, 286, 16163.
(17) Fritz, H.; Hartwich, G.; Werle, E. Hoppe-Seyler’s Z. Physiol. Chem.
1966, 345, 150.
detach efficiently, even in the presence of Gu12BA12 (Figures
5c and 5d, pink). It is noteworthy that 1 µM of ATP hardly
affected the cell detachment rate (Figure 5d, purple). These
results suggest that Gu12BA12 remains bound to Trp in an
ordinary cellular environment, but liberates Trp in ATP-rich
areas such as tumor tissue.
In conclusion, we developed novel molecular glues, Gum-
BAn, carrying multiple guanidinium ion (Gu+) and boronic
acid (BA) pendants, as ATP-responsive modulators for the
activities of enzymes. GumBAn binds tightly to ATP as well as
to proteins. The enzymatic activity of trypsin (Trp) was
effectively modulated in vitro and in cellular systems using
GumBAn and ATP. As Trp/GumBAn conjugates may poten-
tially be sensitive to ATP-rich (>100 µM) tumor tissue, in-
vivo pharmacological studies may furnish interesting results.
ASSOCIATED CONTENT
Supporting Information. Synthesis of GumBAn and GumOHn;
analytical data: NMR, MALDI-TOF mass spectrometry, fluo-
rescence spectroscopy, and related experimental procedures.
(18) Sen, S.; Kumar, S. Cell. Mol. Bioeng. 2009, 2, 218.
ACS Paragon Plus Environment