ChemComm
Communication
Table 1 Deracemization of various aromatic aminesa
(S)-o-TAPO–(R)-o-TAMV
were added into the reaction mixture due to their lower reactivity
((S)-o-TAPO; 1.0 mg, (R)-o-TA; 0.5 mg) (Fig. 3). All racemic
aromatic amines were successfully converted into (R)-amines
(>99%) with good conversion (Table 1). All substrates except d2
and d4 could be deracemized into (R)-amines (>99%) with >97%
conversion. In addition, (S)-o-TAPO–(R)-o-TAMV gave higher
conversion than (S)-o-TAPO–(R)-o-TANF (except for d5 and d6).
In summary, we successfully developed a one-pot one-step
deracemization method using (S)-o-TA and (R)-o-TA through
careful screening of amino acceptors for (S)-o-TA. This novel
deracemization method enabled various aromatic amines
(a-MBA, d1–d8) to be converted into the (R)-form (>99%) with
good conversion. We are currently developing a deracemization
method to produce useful unnatural amino acids using o-TAs.
This research was partially supported by the Basic Science
Research Program (2012044222) through the National Research
Foundation of Korea, Ministry of Education, Science and Tech-
nology, Korea. And this research was partially supported by a
grant (A10301712131560200) of Global Cosmetics R&D Project,
Ministry of Health & Welfare, Korea.
(S)-o-TAPO–(R)-o-TANF
Substrate
Conv. (%)
ee (%)
Conv. (%)
ee (%)
d1
d2
>99
82
98
87
90
>99
98
>99
>99
>99
>99
>99
>99
>99
>99
>99
>99
71
87
94
97
89
79
77
>99
>99
>99
>99
>99
81
d3
d4c
d5b
d6b
d7
>99
>99
d8
a
Reaction conditions: 1 mL reaction volume, 10 mM racemic substrate,
50 mM a9, 50 mM D-Ala, 50 mM glucose, 1 mM NADH, LDH (112 U),
GDH (5 U), 0.2 mM PLP, (S)-o-TAPO (1.0 mg), (R)-o-TA (0.5 mg), 200 mM
Tris–HCl (pH 7.5), 37 1C, 24 h reaction. Conv. and ee were determined
using a Crownpak CR(+) column. Conv. is the percentage of the
remaining amine concentration to the initial amine concentration.
b
c
(S)-o-TAPO (1.86 mg), (R)-o-TA (1.5 mg). ee was determined using
a C18 symmetry column after GITC derivatization.
Notes and references
1 (a) M. Hohne, S. Schatzle, H. Jochens, K. Robins and U. T. Bornscheuer,
Nat. Chem. Biol., 2010, 6, 807–813; (b) K. E. Cassimjee, C. Branneby,
V. Abedi, A. Wells and P. Berglund, Chem. Commun., 2010, 46,
5569–5571.
2 (a) G. Hou, F. Gosselin, W. Li, J. C. McWilliams, Y. Sun, M. Weisel,
P. D. O’Shea, C. Y. Chen, I. W. Davies and X. Zhang, J. Am. Chem. Soc.,
2009, 131, 9882–9883; (b) J. H. Xie, S. F. Zhu and Q. L. Zhou, Chem. Rev.,
2011, 111, 1713–1760; (c) D. Ferrarris, Tetrahedron, 2007, 63, 9581–9587;
(d) A. E. Rubin and K. B. Sharpless, Angew. Chem., Int. Ed. Engl., 1997, 36,
2637–2640; (e) A. F. Abdel-Magid, K. G. Carson, B. D. Harris,
C. A. Maryanoff and R. D. Shah, J. Org. Chem., 1996, 61, 3849–3862.
3 (a) L. K. Thalen, D. Zhao, J. B. Sortais, J. Paetzold, C. Hoben and
J. E. Backvall, Chem.–Eur. J., 2009, 15, 3403–3410; (b) J. Paetzold and
¨
J. E. Backvall, J. Am. Chem. Soc., 2005, 127, 17620–17621; (c) M. J. Kim,
W. H. Kim, K. Han, Y. K. Choi and J. Park, Org. Lett., 2007, 9, 1157–1159.
4 (a) M. Alexeeva, A. Enright, M. J. Dawson, M. Mahmoudian and
N. J. Turner, Angew. Chem., 2002, 114, 3309–3312; (b) R. Carr,
M. Alexeeva, A. Enright, T. S. Eve, M. J. Dawson and N. J. Turner,
Angew. Chem., Int. Ed., 2003, 42, 4807–4810; (c) N. J. Turner, Chem.
Rev., 2011, 111, 4073–4087.
5 (a) N. J. Turner and E. O’Reilly, Nat. Chem. Biol., 2013, 9, 285–288;
(b) D. Koszelewski, K. Tauber, K. Faber and W. Kroutil, Trends
Biotechnol., 2010, 28, 324–332; (c) M. Hohne and U. T.
Bornscheuer, ChemCatChem, 2009, 1, 42–51; (d) M. S. Malik,
E. S. Park and J. S. Shin, Appl. Microbiol. Biotechnol., 2012, 94,
1163–1171; (e) S. Mathew and H. Yun, ACS Catal., 2012, 2,
993–1001; ( f ) W. Kroutil, E. M. Fischereder, C. S. Fuchs,
H. Lechner, F. G. Mutti, D. Pressnitz, A. Rajagopalan, J. H. Sattler,
R. C. Simon and E. Siirola, Org. Process Res. Dev., 2013, 17, 751–759.
6 D. Koszelewski, D. Clay, K. Faber and W. Kroutil, J. Mol. Catal. B:
Enzym., 2009, 60, 191–194.
7 (a) Y. M. Seo, S. Mathew, H. S. Bea, Y. H. Khang, S. H. Lee, B. G. Kim and
H. Yun, Org. Biomol. Chem., 2012, 10, 2482–2485; (b) A. N. Parvulescu,
P. A. Jacobs and D. E. De Vos, Chem.–Eur. J., 2007, 13, 2034–2043.
8 D. Koszelewski, D. Pressnitz, D. Clay and W. Kroutil, Org. Lett., 2009,
11, 4810–4812.
9 D. Koszelewski, N. Mu¨ller, J. H. Schrittwieser, K. Faber and
W. Kroutil, J. Mol. Catal. B: Enzym., 2010, 63, 39–44.
Fig. 3 Amino donor specificities of o-TAs. Amino donors (A) and the relative
reaction rate (B). Reaction conditions: 10 mM pyruvate (a1), 10 mM racemic
amino donor, 100 mM Tris–HCl (pH 7.5) at 37 1C. The initial reaction rate of the
enzyme towards rac-a-MBA was taken as 100%. In cases of inactive substrates,
the vertical bar is not visible in the graph.
(eight aromatic amines, two aliphatic amines, two unnatural
amino acids) in the presence of a 10 mM racemic amino donor
and 10 mM a1, and the consumption rate of a1 was analyzed
using an Aminex HPX-87H HPLC column (Bio-Rad, CA) with the
elution of 5 mM sulfuric acid solution. All enzymes showed
considerable reactivity toward aromatic amines (d1–d8) and
unnatural amino acids (d11). In the case of aliphatic amines
(d9, d10), (R)-o-TAMV and (R)-o-TANF showed considerable
activity, but (S)-o-TAPO did not show any reactivity. In the case
of beta-amino acid (d11), only (S)-o-TAPO showed reactivity.
These results suggested that aromatic amines can be derace-
mized well with o-TAPO–(R)-o-TAMV and (S)-o-TAPO–(R)-o-
TANF, but in the case of aliphatic amine and beta-amino acid,
the deracemization reaction could not be performed efficiently.
Finally, deracemization of aromatic amines (d1–d8) was car-
ried out with 10 mM substrate (Table 1). In the case of d5 and d6,
higher amounts of o-TAs ((S)-o-TAPO; 1.86 mg, (R)-o-TA; 1.5 mg)
10 H. S. Bea, H. J. Park, S. H. Lee and H. Yun, Chem. Commun., 2011, 47,
5894–5896.
11 E. S. Park, J. Y. Dong and J. S. Shin, Appl. Microbiol. Biotechnol., 2013,
DOI: 10.1007/s00253-013-4846-5.
12 S. Schatzle, F. Steffan-Munsberg, A. Thontowi, M. Hohne, K. Robins
and U. T. Bornscheuer, Adv. Synth. Catal., 2011, 353, 2439–2445;
F. G. Mutti, C. S. Fuchs, D. Pressnitz, J. H. Sattler and W. Kroutil,
Adv. Synth. Catal., 2011, 353, 3227–3233.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 8629--8631 8631