Page 7 of 9
Journal of Materials Chemistry A
Please do not adjust margins
Journal Name
ARTICLE
for 12 h. The C, H and N elemental analysis (%) for CTF: 66.09,
2.243, 6.031.
Notes and references
DOI: 10.1039/D0TA09421H
1.
2.
3.
4.
5.
6.
W. Zhong, H. Liu, C. Bai, S. Liao and Y. Li, ACS Catalysis,
2015, 5, 1850-1856.
J. E. Nutting, M. Rafiee and S. S. Stahl, Chem. Rev., 2018,
118, 4834-4885.
A. Das and S. S. Stahl, Angew Chem Int Ed., 2017, 56, 8892-
8897.
A. J. J. Lennox, J. E. Nutting and S. S. Stahl, Chem Sci, 2018,
9, 356-361.
Q. L. Yang, Y. Q. Li, C. Ma, P. Fang, X. J. Zhang and T. S. Mei,
J. Am. Chem. Soc., 2017, 139, 3293-3298.
C. Tian, L. Massignan, T. H. Meyer and L. Ackermann,
Angew Chem Int Ed., 2018, 57, 2383-2387.
C. Y. Cai and H. C. Xu, Nat Commun, 2018, 9, 3551.
B. Schille, N. O. Giltzau and R. Francke, Angew Chem Int Ed.,
2018, 57, 422-426.
Synthesis of PMo10V2@CTF
PMo10V2 (0.05 g) was dissolved in deionized water (15 mL) and
then CTF (100 mg) was added. The mixture was stirred at room
temperature for 8 h and during the process the characteristic
color of PMo10V2 gradually disappeared. Finally, a black solid of
PMo10V2@CTF was obtained after washing with a large amount
of deionized water and drying at 80 °C for 12 h.
Electrochemical Oxidation of Benzyl Alcohols
Preparation of PMo10V2@CTF electrode. The PMo10V2@CTF
working electrode was prepared as follows: PMo10V2@CTF (5
mg) was dispersed in isopropanol (1 mL) containing 5 wt%
Nafion under ultrasonic conditions. 50 µL of this suspension was
drop-casted onto a piece of carbon cloth (1 cm2) and then dried
under vacuum.
Cyclic Voltammetry Experiments. Voltammetric experiments
were performed in anhydrous acetonitrile (10 mL) containing
supporting electrolyte LiClO4 (1.5 mmol) at room temperature.
7.
8.
9.
D. T. Yang, M. Zhu, Z. J. Schiffer, K. Williams, X. Song, X. Liu
and K. Manthiram, ACS Catalysis, 2019, 9, 4699-4705.
A. Badalyan and S. S. Stahl, Nature, 2016, 535, 406-410.
B. You, X. Liu, N. Jiang and Y. Sun, J. Am. Chem. Soc., 2016,
138, 13639-13646.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D.
Eastgate and P. S. Baran, Nature, 2016, 533, 77-81.
Y. Kawamata, M. Yan, Z. Liu, D. H. Bao, J. Chen, J. T. Starr
and P. S. Baran, J. Am. Chem. Soc., 2017, 139, 7448-7451.
J. A. Marko, A. Durgham, S. L. Bretz and W. Liu, Chem
Commun (Camb), 2019, 55, 937-940.
M. YASUZAWA, K. KAN, A. KIJNUGI, Z. OGUMI and Z.
TAKEHARA, Electrochim. Acta, 1995, 40, 1785-1787.
A. L. B. Marques, W. Li, E. P. Marques and J. Zhang,
Electrochim. Acta, 2004, 49, 879-885.
S. Yamazaki, M. Yao, N. Fujiwara, Z. Siroma, K. Yasuda and
T. Ioroi, Chem Commun, 2012, 48, 4353-4355.
A. L. Wang, H. Xu, J. X. Feng, L. X. Ding, Y. X. Tong and G. R.
Li, J. Am. Chem. Soc., 2013, 135, 10703-10709.
Z. Daşdelen, Y. Yıldız, S. Eriş and F. Şen, Appl. Catal., B,
2017, 219, 511-516.
All potentials were measured by
a CH Instruments
Electrochemical Analyzer (CHI660E) with a scan rate of 50 mV s-
1. The CV tests of homogeneous PMo10V2 (10mM) were
performed using a three-electrode setup with glassy carbon
(GC) working electrode (3 mm diameter), a platinum plate (1
cm2) electrode as counter electrode and Ag/AgNO3 as reference
electrode. The CV tests of PMo10V2@CTF were performed with
PMo10V2@CTF modified carbon cloth as working electrode (1
cm2 effective area), a platinum foil as counter electrode and
Ag/AgNO3 electrode as reference electrode.
Controlled Potential Electrolysis Experiments. Bulk electrolysis
experiments were performed in an undivided cell using a three-
electrode setup with a PMo10V2@CTF-modified carbon cloth
(1.0 cm2) as working electrode, a platinum foil as counter
electrode, and a Ag/AgNO3 electrode as reference electrode. To
the cell was added 10 mL of anhydrous acetonitrile solution
containing LiClO4 (1.5 mmol), Et3N (0.18mmol), and benzyl
alcohol (0.6 mmol) and a potential of 1.6 V vs Ag/AgNO3 was
M. Rafiee, Z. M. Konz, M. D. Graaf, H. F. Koolman and S. S.
Stahl, ACS Catalysis, 2018, 8, 6738-6744.
J. Zheng, X. Chen, X. Zhong, S. Li, T. Liu, G. Zhuang, X. Li, S.
Deng, D. Mei and J.-G. Wang, Adv. Funct. Mater., 2017, 27,
1704169.
applied. At the end of electrolysis, biphenyl as internal standard 22.
was added in the reaction solution and the products were
X. Cui, M. Chen, R. Xiong, J. Sun, X. Liu and B. Geng, J.
Mater. Chem. A, 2019, 7, 16501-16507.
N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou, Z. Liu, B. Zhou,
G. Huang, H. Lin and S. Wang, Angew Chem Int Ed., 2019,
58, 15895-15903.
Z. Yin, Y. Zheng, H. Wang, J. Li, Q. Zhu, Y. Wang, N. Ma, G.
Hu, B. He, A. Knop-Gericke, R. Schlogl and D. Ma, ACS Nano,
2017, 11, 12365-12377.
23.
qualitatively analyzed by GC. For the recycle test, after the
reaction the working electrode, PMo10V2@CTF-modified
carbon cloth, was gently washed with acetonitrile and ethyl
alcohol for three times, dried and used for the next cycle.
24.
25.
26.
27.
28.
29.
M. Rafiee, K. C. Miles and S. S. Stahl, J. Am. Chem. Soc.,
2015, 137, 14751-14757.
C. J. Weiss, E. S. Wiedner, J. A. Roberts and A. M. Appel,
Chem Commun, 2015, 51, 6172-6174.
M. T. Masatoshi Shibuya, and Yoshiharu Iwabuchi, J. Org.
Chem., 2008, 73, 4750-4752.
B. L. Ryland and S. S. Stahl, Angew Chem Int Ed., 2014, 53,
8824-8838.
Conflicts of interest
There are no conflict interest to declare.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (21871025, 21831001, 21671019,
21871026, 21771020, and 21971010).
M. H. A. Janssen, J. F. Chesa Castellana, H. Jackman, P. J.
Dunn and R. A. Sheldon, Green Chem., 2011, 13, 905.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins