91
HAKIMELAHI et al., Orient. J. Chem., Vol. 34(1), 86-92 (2017)
Compound 3i: mp 198–200 8C. IR (neat): (d, 2H, J = 8.07 Hz), 7.12-7.15 (m, 3H), 7.39 (d, 1H,
3285.62, 3024.37, 1631.68, 1609.55, 1503.79, J = 2.28 Hz), 7.61 (dd, 1H, J1 = 7.64 Hz, J2 = 1.5
1483.88, 1387.95, 1366.74, 1317.89, 1258.12, Hz), 9.35 (s, 1H). 13C NMR (100 MHz, DMSO-d6): d
1191.04, 1158.03, 1069.94, 836.88, 793.58, 754.82, 20.73, 73.15, 114.62, 115.12, 115.42, 117.32,
1
713.91, 694.77 cm-1. H NMR (400 MHz, DMSO- 126.56, 127.91, 127.95, 128.89, 132.24, 133.53,
d6): d 6.53 (d, 1H, J = 2.5 Hz), 6.77 (dt, 1H, J1 = 7.55 137.60, 138.02, 146.64, 155.55, 162.34. Anal. Calcd
Hz, J2 = 1.01 Hz), 6.82 (d, 1H, J = 7.81 Hz), 6.86 for C21H18N2O2: C, 76.44; H, 5.51; N, 8.49; Found:
(dd, 1H, J1 = 5.03 Hz, J2 = 3.51 Hz), 6.97 (d, 1H, J = C, 76.25; H, 5.33; N, 8.29.
3.52 Hz), 7.21-7.26 (m, 1H), 7.32-7.41 (m, 6H), 7.72
(d, 1H, J = 2.75 Hz), 7.73 (dd, 1H, J1 = 7.81 Hz, J2 =
1.5 Hz). 13C NMR (100 MHz, DMSO-d6): d 69.56,
115.28, 115.66, 118.15, 125.93, 126.34, 126.36,
CONCLUSION
In summary, we have established a new
126.40, 126.52, 127.97, 128.71, 133.84, 140.49, application of zinc oxide nanotubes modified by SiO2
144.63, 146.38, 161.59. Anal. Calcd for as an effective, suitable and reusable catalyst. A
practical and simple method which redounds to
excellent yields of the 2,3-Di hydro quinazolin-
4(1H)-one derivatives under mild conditions and
within short times. The reason proposed for higher
catalytic activity of zinc oxide nano tubes modified
by SiO2 is a combination effect of the small particle
size and high-density surface defects. In these
reactions, ammonium acetate and different types of
aromatic aldehydes as initial materials have
potential green chemistry advantages. This method
is reasonable from economic point of view and
environmentally, due to little waste production.
Some advantages like as simple preparation,
C18H14N2OS: C, 70.62; H, 4.63; N, 9.16; S, 10.51;
Found: C, 70.41; H, 4.52; N, 9.07; S, 10.36.
Compound 3j: mp 152-154 8C. IR (neat): 3282.12,
3027.52, 1628.2, 1609.22, 1583.63, 1506.14,
1485.19, 1408.12, 1311.41, 1173.38, 822.38,
750.44, 693.89 cm-1. H NMR (400 MHz, DMSO-
1
d6): d 6.31 (d, 1H, J = 2.5 Hz), 6.73(dt, 1H, J1 = 7.55
Hz, J2 = 1.01 Hz), 6.77 (d, 1H, J = 7.79 Hz), 7.11-
7.23 (m, 3H), 7.28-7.33 (m, 3H), 7.32-7.37 (m, 2H),
7.41-7.46 (m, 2H), 7.65 (d, 1H, J = 2.5 Hz), 7.76 (dd,
1H, J1 = 7.83 Hz, J2 = 1.5 Hz). 13C NMR (100 MHz,
DMSO-d6): d 72.09, 114.88, 115.18, 115.29,
115.34, 117.66, 126.14, 126.48, 127.99, 128.67, stability of catalyst, easy handling, short reaction
128.79, 128.89, 133.85, 136.88, 140.64, 146.59, times, having a procedure with simple work-up and
160.69, 162.28, 163.11. Anal. Calcd for C23H22N2O: the high yields of products, put this reaction at the
C, 80.69; H, 6.51; N, 8.22; Found: C, 80.53; H, 6.37; best existing methodologies. No necessary of using
N, 8.03. Compound 3k: mp 249-253 8C. IR (neat): toxic organic solvents as media, is another positive
3311.08, 3119.81, 3015.72, 2891.34, 2359.39, sight.
1633.77, 1612.59, 1595.97, 1580.45, 1514.48,
1444.67, 1421.48, 1266.71, 1225.65, 1150.56,
1117.88, 1018.55, 870.02, 839.52, 806.59, 770.74,
752.55, 695.39cm-1. 1H NMR (400 MHz, DMSO-d6):
ACKNOWLEDGEMENT
The authors gratefully appreciate partial
d 2.11 (s, 3H), 5.94 (d, 1H, J = 2.5 Hz), 6.54-6.62 (m, support of this research by the Islamic Azad
4H), 6.92 (dt, 2H, J1 = 8.83 Hz, J2 = 2.02 Hz), 6.99 University, Jahrom and Shiraz Branch, Iran.
REFERENCES
1.
2.
3.
4.
5.
Choudhary, D; Paul, S; Gupta. R; Clark. J. H,
Green Chem. 2006, 8 ,479-482.
Niknam, K; Saberi, D, Appl. Catal. 2009, 366,
220-225.
Niknam, K;Saberi, D, Tetrahedron Lett. 2009,
50, 5210-5214.
Karimi, B; Ghoreishi-Nezhad, M, J. Mol. Catal.
A. Chem. 2007, 277, 262-265.
Melero, J. A.; Van Grieken, R; Morales, G,
Chem. Rev. 2006,106, 3790-3812.
6.
7.
8.
9.
Niknam, K; Saberi, D; Nouri Sefat, M,
Tetrahedron Lett. 2009, 50, 4058-4062.
Niknam, K; Saberi, D; Molaee, H; Zolfigol, M.
A. Can. J. Chem. 2010, 88, 164-171.
Sadanadam, Y. S.; Reddy, R. M.; Bhaskar,
A. Eur. J. Med. Chem. 1987, 22, 169-173.
(a) Yale, H. L.; Kalkstein, M. J. Med. Chem.
1967, 10, 334-336;(b). Bonola, G.; Sianesi,