C O M M U N I C A T I O N S
t
employed. Reaction of 2 and H
be exothermic by 6 kcal/mol, but with a barrier of 45 kcal/mol. In
contrast, the calculated barrier for H addition across the Pd-OH bond
of (PCP)Pd(OH) {PCP ) 2,6-bis(CH PMe }, to give (PCP)Pd-
H) and water, is 21.0 kcal/mol, despite the similar reaction enthalpy
2
to give 3 and aniline is calculated to
The activation of H
2
by ( bpy)Pt(Me)(NHPh) (2) produces
( bpy)Pt(Me)(H) (3). However, kinetic studies lead to the conclusion
that, rather than direct activation of H across the Pt-NHPh bond,
t
2
2
2
2
)
2
C H
6 3
Pt(s) is catalyzing the hydrogenation of the Pt-NHPh moiety,
though the specific mechanism of this transformation is not known.
To our knowledge, this is the first report of a heterogeneous catalyst
for activation of covalent bonds toward addition across an M-X
(X ) NHR or OR) bond and a rare example of net H addition to
2
M-L bonds by a heterogeneous catalyst.
(
8
(
-4 kcal/mol). At the current level of theory, the calculated H
activation barrier and reaction enthalpy for (PCP)Pd(OMe) (24 and
3 kcal/mol, respectively) are similar to those of the hydroxy analogue.
2
-
2
3,24
2
Figure 3. Calculated transition state for activation of H by complex 2.
Most hydrogen atoms omitted for clarity.
Acknowledgment. T.B.G. acknowledges the NSF (CHE-
848693) for funding. T.R.C. thanks the NSF for support (CHE-
701247) and facilities (CHE-0741936). A.W.P. thanks the UNT
0
0
Toulouse Graduate School for a Dissertation Fellowship.
Supporting Information Available: Characterization data, experi-
mental and computational details including kinetic studies and plots,
and X-ray crystallographic data files for 2. This material is available
free of charge via the Internet at http://pubs.acs.org.
2
Figure 2. Plots monitoring [2] versus time: (A) 200 psi of H at room
temperature, (B) reaction solution filtered to remove Pt(s) after initial
induction period (plot started after 14 400 s reaction time).
References
(
1) Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. ReV. 2008, 108, 2916.
2) Goeden, G. V.; Caulton, K. G. J. Am. Chem. Soc. 1981, 103, 7354.
(
Figure 3 displays the calculated transition state for H-H
activation by 2. For the amido lone pair (conjugated with the phenyl
substituent) to orient to receive a H atom from H , it must be aligned
2
(3) Jessop, P. G.; Joo, F.; Tai, C. C. Coord. Chem. ReV. 2004, 248, 2425.
(
(
4) Wenzel, T. T. Stud. Surf. Sci. Catal. 1991, 66, 545.
5) Sandoval, C. A.; Ohkuma, T.; Muniz, K.; Noyori, R. J. Am. Chem. Soc.
2
003, 125, 13490.
(
(
(
6) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am. Chem.
perpendicular to the Pt square plane. This orientation would place
Soc. 2001, 123, 7473.
the phenyl substituent in close proximity to either the Me or the
7) Fryzuk, M. D.; Montgomery, C. D.; Rettig, S. J. Organometallics 1991,
10, 467.
t
2
bpy ligand, which provides a steric inhibition to H activation. In
8) Fulmer, G. R.; Muller, R. P.; Kemp, R. A.; Goldberg, K. I. J. Am. Chem.
Soc. 2009, 131, 1346.
the calculated transition state, the phenyl substituent may rotate
perpendicular to the amide plane, breaking Cipso-N conjugation.
Note the longer bond length of 1.46 Å for the Cipso-N bond in the
TS (Figure 3) versus 1.39 Å (calcd., 1.36 Å/experimental) in 2.
(9) Feng, Y.; Lail, M.; Barakat, K. A.; Cundari, T. R.; Gunnoe, T. B.; Petersen,
J. L. J. Am. Chem. Soc. 2005, 127, 14174.
(
(
10) Feng, Y.; Lail, M.; Foley, N. A.; Gunnoe, T. B.; Barakat, K. A.; Cundari,
T. R.; Petersen, J. L. J. Am. Chem. Soc. 2006, 128, 7982.
11) Tenn, W. J., III; Young, K. J. H.; Bhalla, G.; Oxgaard, J.; Goddard, W. A.,
III; Periana, R. A. J. Am. Chem. Soc. 2005, 127, 14172.
Comparison of calculated H
HPh) (M ) Pd or Pt) and (PCP)Pd(OMe), (bpy)Pt(Me)(NHMe),
bpy)M(Me)(OMe), and (bpy)Pt(Me)(NHPh*) {Ph* denotes a Ph
2
-scission barriers for (bpy)M(Me)(N-
(12) Kloek, S. M.; Heinekey, D. M.; Goldberg, K. I. Angew. Chem., Int. Ed.
2
007, 46, 4736.
(
(
13) Conner, D.; Jayaprakash, K. N.; Cundari, T. R.; Gunnoe, T. B. Organo-
in the MM region of a QM/MM calculation} suggests that the
remarkable difference in barriers between (bpy)Pt(Me)(NHPh) and
metallics 2004, 23, 2724.
(
(
14) Bercaw, J. E.; Hazari, N.; Labinger, J. A. Organometallics 2009, 28, 5489.
15) Oxgaard, J.; Tenn, W. J., III; Nielson, R. J.; Periana, R. A.; Goddard, W. A.,
III. Organometallics 2007, 26, 1565.
(PCP)Pd(OMe) is due in equal parts to replacement of the metal
(Pt f Pd), activating ligand (NHMe f OMe), and supporting ligand
(bpy/Me f PCP). The predicted enhancement upon substituting
(
(
(
16) Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I.
J. Chem. Soc., Dalton Trans. 2009, 5820.
17) Cundari, T. R.; Grimes, T. V.; Gunnoe, T. B. J. Am. Chem. Soc. 2007,
1
29, 13172.
Pd for Pt might be explained by the anticipated increase in
electrophilicity of Pd (vs Pt), which would facilitate H activation.
The long Pt-H bond distances in the calculated transition state for
(Figure 3) are consistent with weak Pt/H activation as one source
18) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans.
2
1
996, 1809.
(19) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough,
A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
2
2
(
20) Yang, J. Y.; Bullock, R. M.; Shaw, W. J.; Twamley, B.; Fraze, K.; DuBois,
M. R.; DuBois, D. L. J. Am. Chem. Soc. 2009, 131, 5935.
21) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003, 198, 317.
22) Hamlin, J. E.; Hirai, K.; Millan, A.; Maitlis, P. M. J. Mol. Catal. 1980, 7,
543.
of a substantial activation barrier. These influences underscore the
subtle balance required to access systems that can activate H-H
(
(
and C-H bonds. In the transition states for H
2
activation by
(
23) Miller, T. M.; Izumi, A. N.; Shih, Y. S.; Whitesides, G. M. J. Am. Chem.
(
bpy)M(Me)(NHPh) the calculated Pt-H bond distances are 2.48
Soc. 1988, 110, 3146.
and 2.34 Å, while the Pd-H distances for the TS of the complex
(24) Begum, R. A.; Chanda, N.; Ramakrishna, T. V. V.; Sharp, P. R. J. Am.
Chem. Soc. 2005, 127, 13494.
8
reported by Goldberg are indeed shorter, 2.12 and 2.14 Å, despite
the near identical covalent radii of Pd and Pt.
JA9102309
J. AM. CHEM. SOC. 9 VOL. 132, NO. 13, 2010 4521