ChemComm
Page 4 of 4
Journal Name
COMMUNICATION
Conclusions
2
3
E. Kimoto, H. Tanaka, J. Gyotoku, F. Morishige, L. Pauling, Cancer
Res., 1983, 43, 824-828. Z. Yu, M. Han, J. A. Cowan, Angew. Chem.
DOI: 10.1039/C5CC04508H
Investigation of DNA cleavage by agarose gel electrophoresis
showed that fluorophore-carrying peptides 1a – 3a coordinated
to Cu(II) (1b - 3b) are efficient DNA cleaving agents in the
presence of a reducing agent. Plasmid DNA is cleaved even at
very low concentrations. Due to the linked sterically bulky
dyes, and thus the hindered approach of the complexes to DNA,
our system is, however, less efficient under very similar
conditions than the copper complexes of GGH, KGHK and the
unfunctionalised peptide a (in the case of KGHK the positive
charge of the lysine side chains supports interaction with
DNA6). Still, the cleavage activity of 1b - 3b which is in the
low micromolar range (cf. Fig. S3.5), is close to the one of
Cu(phen)2, the first reported and one of the most efficient
oxidative chemical nucleases.28 Experiments regarding the
mechanism of DNA cleavage lead to the conclusion that DNA
is cleaved oxidatively by hydroxyl radicals, peroxo species and
singlet oxygen.
By spectroscopic means (fluorescence, NMR) we demonstrated
that Cu(II) is reduced to Cu(I) which is required to reduce O2 to
superoxide and subsequently produces H2O2. Hydrogen
peroxide can then interact with Cu(I) to form metal-oxo species
and hydroxyl radicals that induce DNA cleavage (Scheme 1).24
Quenched fluorescence of the Cu(II)-coordinated peptides 1b -
3b is regained when the Cu(II) ions react during this process.
These new complexes not only initiate cleavage of DNA, but at
the same time display changes of the oxidation state of the
involved Cu(II) ions. Thus, our system simultaneously
comprises a DNA cleaving agent and a redox-sensitive probe.
After this proof of concept application of the herein described
Cu(II) fluorescent peptides in cell experiments is conceivable
(except for 1b which requires working at pH 5).
Int. Ed., 2015, 54, 1901-1905.
S.-J. Lau, T. P. A. Kruck, B. Sarkar, J. Biol. Chem., 1974, 249, 5878-
5884.
4
5
6
7
E. C. Long, Acc. Chem. Res., 1999, 32, 827-836.
Y. Jin, J. A. Cowan, J. Biol. Inorg. Chem., 2007, 12, 637-644.
Y. Jin, J. A. Cowan, J. Am. Chem. Soc., 2005, 127, 8408-8415.
Y. Jin, M. A. Lewis, N. H. Gokhale, E. C. Long, J. A. Cowan, J. Am.
Chem. Soc., 2007, 129, 8353-8361.
8
9
J. C. Joyner, J. Reichfield, J. A. Cowan, J. Am. Chem. Soc., 2011,
133, 15613-15626.
A. C. Matias, N. Villa dos Santos, R. Chelegão, C. S. Nomura, P. A.
Fiorito, G. Cerchiaro, J. Inorg. Biochem., 2012, 116, 172-179.
10 J. C. Joyner, W. F. Hodnick, A. S. Cowan, D. Tamuly, R. Boyd, J. A.
Cowan, Chem. Commun., 2013, 49, 2118-2120; S. Bradford, Y.
Kawarasaki, J. A. Cowan, J. Inorg. Biochem., 2009, 103, 871-875.
11 C. Harford, B. Sarkar, Acc. Chem. Res., 1997, 30, 123-130.
12 D. F. Shullenberger, P. D. Eason, E. C. Long, J. Am. Chem. Soc.,
1993, 115, 11038-11039.
13 A. Torrado, G. K. Walkup, B. Imperiali, J. Am. Chem. Soc., 1998,
120, 609-610; T. R. Young, C. J. K. Wijekoon, B. Spyrou, P. S.
Donnelly, A. G. Wedd, Z. Xiao, Metallomics, 2015, 7, 567-578.
14 S. S. Bhat, A. A. Kumbhar, H. Heptullah, A. A. Khan, V. V. Gobre,
S. P. Gejji, V. G. Puranik, Inorg. Chem., 2011, 50, 545-558.
15 S. I. Kirin, F. Noor, N. Metzler-Nolte, W. Mier, J. Chem. Educ.,
2007, 84, 108-111.
16 L. Fülöp, B. Penke, M. Zarándi, J. Peptide Sci., 2001, 7, 397-401.
17 H. Korpi, P. J. Figiel, E. Lankinen, P. Ryan, M. Leskelä, T. Repo,
Eur. J. Inorg. Chem., 2007, 2465-2471; K. P. Neupane, A. R. Aldous,
J. A. Kritzer, Inorg. Chem., 2013, 52, 2729-2735.
18 M. Von Piechowski, M.-A. Thelen, J. Hoigné, R. E. Bühler, Ber.
Bunsenges. Phys. Chem., 1992, 96, 1448-1454.
19 E. L. Hegg, J. N. Burstyn, Inorg. Chem., 1996, 35, 7474-7481.
20 A. Sreedhara, J. D. Freed, J. A. Cowan; J. Am. Chem. Soc., 2000,
122, 8814-8824.
Acknowledgements
The authors would like to thank Biprajit Sarkar for helpful
discussions.
21 S.-H. Chiou, J. Biochem., 1983, 94, 1259-1267.
22 J. G. Parker, W. D. Stanbro, J. Photochem., 1984, 25, 545-547.
23 G. K. Rollefson, R. W. Stoughton, J. Am. Chem. Soc., 1941, 63,
1517-1520; W.-Y. Lin, H. E. van Wart, J. Inorg. Biochem., 1988, 32,
21-38; J. Brunner, R. Krämer, J. Am. Chem. Soc., 2004, 126, 13626-
13627.
Notes and references
Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr.
a
34/36, D-14195 Berlin, Germany. E-mail: nora.kulak@fu-berlin.de; Fax:
+49 30 838 454697; Tel: +49 30 838 54697.
†
There is indication from the literature that the thiourea bond (as in
24 L. Guilloreau, S. Combalbert, A. Sournia-Saquet, H. Mazarguil, P.
Faller, ChemBioChem, 2007, 8, 1317-1325.
peptide 3a) is not stable during cleavage from the solid support with
TFA (trifluoroacetic acid).16 Under the conditions chosen, however, the
coupling of FITC on solid support was possible, the yield though, was
low.
25 C. Hureau, H. Eury, R. Guillot, C. Bijani, S. Sayen, P.-L. Solari, E.
Guillon, P. Faller, P. Dorlet, Chem. Eur. J., 2011, 17, 10151-10160.
26 L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, A. Taglietti, D.
Sacchi, Chem. Eur. J., 1996, 2, 75-82; G. De Santis, L. Fabbrizzi, M.
Licchelli, C. Mangano, D. Sacchi, Inorg. Chem., 1995, 34, 3581-
3582.
Whereas the basic ATCUN sequence does not bind Cu(II) at pH
values lower than 6,11,17 at pH 5 the rhodamine B labelled peptide 2a
shows Cu(II) binding as well as fluorescence emission. This thus allows
application of the presented concept also at non-physiological pH values.
Electronic Supplementary Information (ESI) available: experimental
section, determination of peptide yields, DNA cleavage, UV/vis,
fluorescence and NMR experiments. See DOI: 10.1039/c000000x/
27 S. Feng, X. Chen, J. Fan, G. Zhang, J. Jiang, X. Wei, Anal. Lett.,
1998, 31, 463-474; J. Fan, H.-Q. Guo, S.-L. Feng, J. Fluoresc., 2007,
17, 257-264.
28 J. M. Veal, K. Merchant, R. L. Rill, Nucleic Acids Res., 1991, 19,
3383-3388.
1
T. Peters Jr., Biochim. Biophys. Acta 1960, 39, 546-547.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012