Communication
RSC Advances
pentaerythritol/t-Bu-P4
initiator.
The
CL-PTGE/SWCNT 18 M. Yuasa and K. Oyaizu, Curr. Org. Chem., 2005, 9, 1685–
composite electrode (9/1 in w/w) exhibited a quantitative
charging/discharging at high current densities with a long cycle 19 J. E. Benedetti, M. A. de Paoli and A. F. Nogueira, Chem.
life, due to the low resistance supported by the conductive Commun., 2008, 1121–1123.
network of SWCNT and the high affinity of CL-PTGE to the 20 F. S. Freitas, J. N. de Freitas, B. I. Ito, M.-A. De Paoli and
1697.
electrolyte solution. The combination of the crosslinked poly-
(glycidyl ether) and SWCNT showed great potential in utilizing
redox polymers for energy devices.
A. F. Nogueira, ACS Appl. Mater. Interfaces, 2009, 1, 2870–
2877.
21 K. P. Barteau, M. Wolffs, N. A. Lynd, G. H. Fredrickson,
E. J. Kramer and C. J. Hawker, Macromolecules, 2013, 46,
8988–8994.
22 a. Blazejczyk, W. Wieczorek, R. Kovarsky, D. Golodnitsky,
E. Peled, L. G. Scanlon, G. B. Appetecchi and B. Scrosati, J.
Electrochem. Soc., 2004, 151, A1762.
23 R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa,
J. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux,
R. Denoyel and M. Armand, Nat. Mater., 2013, 12, 452–457.
24 F. Croce, G. B. Appetecchi, L. Persi and B. Scrosati, Nature,
1998, 394, 456–458.
Acknowledgements
This work was partially supported by Grants-in-Aid for Scientic
Research (no. 24108739, 24225003, 25107733, and 25288056)
and the Leading Graduate Program in Science and Engineering,
Waseda University from MEXT, Japan. Support by the project
“Functional Redox Polymers” of Waseda Advanced Research
Institute for Science & Engineering is acknowledged.
25 K. Sinha and J. K. Maranas, Macromolecules, 2011, 44, 5381–
5391.
Notes and references
26 K. Sinha, W. Wang, K. I. Winey and J. K. Maranas,
Macromolecules, 2012, 45, 4354–4362.
‡ The 1 C rate is dened as the current density at which the charging or dis-
charging of the cell takes 1 h.
´
¨
27 P. Novak, K. Muller, K. S. V. Santhanam and O. Haas, Chem.
1 H. Nishide and K. Oyaizu, Science, 2008, 319, 737–738.
Rev., 1997, 97, 207–282.
2 K. Oyaizu and H. Nishide, Adv. Mater., 2009, 21, 2339–2344. 28 Z. Jia, W. Yuan, H. Zhao, H. Hu and G. L. Baker, RSC Adv.,
3 W. Choi, D. Harada, K. Oyaizu and H. Nishide, J. Am. Chem.
Soc., 2011, 133, 19839–19843.
2014, 4, 41087–41098.
29 H. Hu, W. Yuan, L. Lu, H. Zhao, Z. Jia and G. L. Baker, J.
4 P. L. Taberna, S. Mitra, P. Poizot, P. Simon and
J.-M. Tarascon, Nat. Mater., 2006, 5, 567–573.
Polym. Sci., Part A: Polym. Chem., 2014, 52, 2104–2110.
30 H. Hu, W. Yuan, Z. Jia and G. L. Baker, RSC Adv., 2014, 5,
5 A. Manthiram and J. Kim, Chem. Mater., 1998, 10, 2895–2909.
3135–3140.
¨
¨
6 M. Wilkening, C. Muhle, M. Jansen and P. Heitjans, J. Phys. 31 M. J. Lacey, F. Jeschull, K. Edstrom and D. Brandell, Chem.
Chem. B, 2007, 111, 8691–8694.
7 G. Yang, G. Wang and W. Hou, J. Phys. Chem. B, 2005, 109, 32 J. Xiao, X. Wang, X.-Q. Yang, S. Xun, G. Liu, P. K. Koech, J. Liu
11186–11196.
and J. P. Lemmon, Adv. Funct. Mater., 2011, 21, 2840–2846.
8 P. Zhang, Y. Wu, D. Zhang, Q. Xu, J. Liu, X. Ren, Z. Luo, 33 A. E. Javier, S. N. Patel, D. T. Hallinan, V. Srinivasan and
Commun., 2013, 49, 8531–8533.
M. Wang and W. Hong, J. Phys. Chem. A, 2008, 112, 5406–
N. P. Balsara, Angew. Chem., Int. Ed. Engl., 2011, 50, 9848–
5410.
9851.
`
9 A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon and W. van 34 S. N. Patel, A. E. Javier and N. P. Balsara, ACS Nano, 2013, 7,
Schalkwijk, Nat. Mater., 2005, 4, 366–377. 6056–6068.
10 S. Myung, S. Komaba, K. Hosoya, N. Hirosaki, Y. Miura and 35 T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu and H. Nishide, Adv.
N. Kumagai, Chem. Mater., 2005, 17, 2427–2435. Mater., 2011, 23, 751–754.
11 K. T. Nam, D. Kim, P. J. Yoo, C.-Y. Chiang, N. Meethong, 36 T. Janoschka, M. D. Hager and U. S. Schubert, Adv. Mater.,
P. T. Hammond, Y. Chiang and A. M. Belcher, Science,
2006, 312, 885–888.
12 K. Oyaizu, T. Kawamoto, T. Suga and H. Nishide,
Macromolecules, 2010, 43, 10382–10389.
2012, 24, 6397–6409.
37 I. S. Chae, M. Koyano, T. Sukegawa, K. Oyaizu and
H. Nishide, J. Mater. Chem. A, 2013, 1, 9608.
38 T. Sukegawa, A. Kai, K. Oyaizu and H. Nishide,
Macromolecules, 2013, 46, 1361–1367.
13 S. van Reenen, P. Matyba, A. Dzwilewski, R. A. J. Janssen,
L. Edman and M. Kemerink, J. Am. Chem. Soc., 2010, 132, 39 L. Bugnon, C. J. H. Morton, P. Novak, J. Vetter and
13776–13781. P. Nesvadba, Chem. Mater., 2007, 19, 2910–2914.
14 T. Wagberg, P. R. Hania, N. D. Robinson, J.-H. Shin, 40 T. Hyakutake, J. Y. Park, Y. Yonekuta, K. Oyaizu, H. Nishide
P. Matyba and L. Edman, Adv. Mater., 2008, 20, 1744–1749.
and R. Advincula, J. Mater. Chem., 2010, 20, 9616.
15 J. Lee, M. J. Panzer, Y. He, T. P. Lodge and C. D. Frisbie, J. Am. 41 T. Suga, K. Yoshimura and H. Nishide, Macromol. Symp.,
Chem. Soc., 2007, 129, 4532–4533.
2006, 245–246, 416–422.
16 K. H. Lee, S. Zhang, Y. Gu, T. P. Lodge and C. D. Frisbie, ACS 42 T. Endo, K. Takuma, T. Takata and C. Hirose,
Appl. Mater. Interfaces, 2013, 5, 9522–9527. Macromolecules, 1993, 26, 3227–3229.
17 J. Liu, I. Engquist, X. Crispin and M. Berggren, J. Am. Chem. 43 K. Oyaizu, T. Suga, K. Yoshimura and H. Nishide,
˚
Soc., 2012, 134, 901–904.
Macromolecules, 2008, 41, 6646–6652.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 15448–15452 | 15451