714 Bioconjugate Chem., Vol. 21, No. 4, 2010
Nakahara et al.
(
(
(
11) Yang, X., Wyatt, R., and Sodroski, J. (2001) Improved
elicitation of neutralizing antibodies against primary human
immunodeficiency viruses by soluble stabilized envelope gly-
coprotein trimers. J. Virol. 75, 1165–1171.
(25) Eom, K. D., Miao, Z., Yang, J.-L., and Tam, J. P. (2003)
Tandem ligation of multipartite peptides with cell-permeable
activity. J. Am. Chem. Soc. 125, 73–82.
(26) Sadler, K., Zhang, Y., Xu, J., Yu, Q., and Tam, J. P. (2008)
Quaternary protein mimetics of gp41 elicit neutralizing antibodies
against HIV fusion-active intermediate state. Biopolym. (Pept.
Sci.) 90, 320–329.
(27) Bychkova, V. E., Dujsekina, A. E., Klenin, S. I., Tiktopulo,
E. I., Uversky, V. N., and Ptitsyn, O. B. (1996) Molten globule-
like state of cytochrome c under conditions simulating those near
the membrane surface. Biochemistry 35, 6058–6063.
(28) Nishi, K., Komine, Y., Sakai, N., Maruyama, T., and Otagiri,
M. (2005) Cooperative effect of hydrophobic and electrostatic
12) Grundner, C., Mirzabekov, T., Sodroski, J., and Wyatt, R.
(
2002) Solid-phase proteoliposomes containing human immu-
nodeficiency virus envelope glycoproteins. J. Virol. 76, 3511–
521.
3
13) De Rosny, E., Vassell, R., Wingfield, R. T., Wild, C. T., and
Weiss, C. D. (2001) Peptides corresponding to the heptad repeat
motifs in the transmembrane protein (gp41) of human immu-
nodeficiency virus type 1 elicit antibodies to receptor-activated
conformations of the envelope glycoprotein. J. Virol. 75, 8859–
8
863.
forces on alcohol-induced R-helix formation of R -acid glyco-
1
(
(
(
14) Tam, J. P., and Yu, Q. (2002) A facile ligation approach to
prepare three-helix bundles of HIV fusion-state protein mimetics.
Org. Lett. 4, 4167–4170.
protein. FEBS Lett. 579, 3596–3600.
(29) Chan, D. C., Chutkowski, C. T., and Kim, P. S. (1998)
Evidence that a prominent cavity in the coiled coil of HIV type
1 gp41 is an attractive drug target. Proc. Natl. Acad. Sci. U.S.A.
95, 15613–15617.
15) Xu, W., and Taylor, J. W. (2007) A template-assembled model
of the N-peptide helix bundle from HIV-1 gp-41 with high
affinity for C-peptide. Chem. Biol. Drug Des. 70, 319–328.
16) Louis, J. M., Nesheiwat, I., Chang, L., Clore, G. M., and
Bewlet, C. A. (2003) Covalent trimers of the internal N-terminal
trimeric coiled-coil of gp41 and antibodies directed against them
are potent inhibitors of HIV envelope-mediated cell fusion.
J. Biol. Chem. 278, 20278–20285.
(
30) Liu, S., Jing, W., Cheng, B., Lu, H., Sun, J., Yan, X., Niu, J.,
Farmar, J., Wu, S., and Jiang, S. (2007) HIV gp41 C-terminal
heptad repeat contains multifunctional domains: relation to
mechanism of action of anti-HIV peptides. J. Biol. Chem. 282,
9
612–9620.
(
31) Franke, R., Hirsch, T., Overwin, H., and Eichler, J. (2007)
Synthetic mimetics of the CD4 binding site of HIV-1 gp120 for
the design of immunogens. Angew. Chem., Int. Ed. 46, 1253–
(
17) Chen, Y.-H., Yang, J. T., and Chau, K. H. (1974) Determi-
nation of the helix and ꢀ form of proteins in aqueous solution
by circular dichroism. Biochemistry 13, 3350–3359.
1
255.
(
18) Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and
Kallenbach, N. R. (1991) The helix-coil transition in heteroge-
neous peptides with specific side-chain interactions: theory and
comparison with CD spectral data. Biopolymers 13, 1605–1614.
19) Jackson, D. Y., King, D. S., Chmielewski, J., Singh, S., and
Schultz, P. G. (1991) A general approach to the synthesis of
short alpha-helical peptides. J. Am. Chem. Soc. 113, 9391–9392.
20) Ohba, K., Ryo, A., Dewan, M. Z., Nishi, M., Naito, T., Qi,
X., Inagaki, Y., Nagashima, Y., Tanaka, Y., Okamoto, T.,
Terashima, K., and Yamamoto, N. (2009) Follicular dendritic
cells activate HIV-1 replication in monocytes/macrophages
through a juxtacrine mechanism mediated by P-selectin glyco-
protein ligand 1. J. Immunol. 183, 524–532.
(
(
32) Robinson, J. A. (2008) ꢀ-hairpin peptidomimetics: design,
structures and biological activities. Acc. Chem. Res. 41, 1278–
1
288.
33) Lu, M., Ji, H., and Shen, S. (1999) Subdomain folding and
biological activity of the core structure from human immuno-
deficiency virus type 1 gp41: implications for viral membrane
fusion. J. Virol. 73, 4433–4438.
(
(
(
(
34) Eckert, D. M., and Kim, P. S. (2001) Design of potent
inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc.
Natl. Acad. Sci. U.S.A. 98, 11187–11192.
35) Bianchi, E., Finotto, M., Ingallinella, P., Hrin, R., Carella,
A. V., Hous, X. S., Schleif, W. A., and Miller, M. D. (2005)
Covalent stabilization of coiled coils of the HIV gp41 N region
yields extreamely potent and broad inhibitors of viral infection.
Proc. Natl. Acad. Sci. U.S.A. 102, 12903–12908.
(
21) Liu, J., Shu, W., Fagan, M. B., Nunberg, J. H., and Lu, H.
(
2001) Structural and functional analysis of the HIV gp41 core
containing an Ile573 to Thr substitution: implications for
membrane fusion. Biochemistry 40, 2797–2807.
(36) Zwick, M. B., Saphire, E. O., and Burton, D. R. (2004) gp41:
HIV’s shy protein. Nat. Med. 10, 133–134.
(
(
(
22) Liu, C. F., and Tam, J. P. (1994) Peptide segment ligation
strategy without use of protecting groups. Proc. Natl. Acad. Sci.
U.S.A. 91, 6584–6588.
23) Tam, J. P., and Miao, Z. (1999) Stereospecific pseudoproline
ligation of N-terminal serine, threonine, or cysteine-containing
unprotected peptides. J. Am. Chem. Soc. 121, 9013–9022.
24) Tam, J. P., Yu, Q., and Yang, J.-L. (2001) Tandem ligation
of unprotected peptides through thiaprolyl and cysteinyl bonds
in water. J. Am. Chem. Soc. 123, 2487–94.
(
37) Walker, L. M., Phogat, S. K., Chan-Hui, P.-Y., Wagner, D.,
Phung, P., Goss, J. L., Wrin, T., Simek, M. D., Fling, S.,
Mitcham, J. L., Lehrman, J. K., Priddy, F. H., Olsen, O. A.,
Frey, S. M., Hammond, P. W., Kaminsky, S., Zamb, T., Moyle,
M., Koff, W. C., Poignard, P., and Burton, D. R. (2009) Broad
and potent neutralizing antibodies from an African donor reveal
a new HIV-1 vaccine target. Science 326, 285–289.
BC900502Z