Nitro esters are valuable sources of stabilized carbanions
in organic synthesis, and they have been used as masked
amino acids in various organic transformations.8 However,
enantioselective reactions employing nitro esters are currently
very limited.9 In this context, we were intrigued to develop
an organocatalytic asymmetric addition of nitro esters to R,ꢀ-
unsaturated ketones, as examples of this type of enantiose-
lective conjugate additions are scarce in the literature. Ikariya
and co-workers reported enantioselective addition of ethyl
nitroacetate to cyclopentenone, catalyzed by a chiral ruthe-
nium complex.10 Jørgensen et al. prepared a number of novel
secondary amine organocatalysts and applied them in the
Michael addition of nitroacetate to R,ꢀ-unsaturated ketones.
The products were formed with good enantioselectivities,
and no diastereoselectivity was observed.11 Although very
interesting, those reported reactions suffered from very low
reaction rates, and virtually no reaction scope was explored
in these studies. We envisaged that an enantioselective
conjugate addition of nitro esters to enones may be achieved
via efficient iminium activation of enones by primary amine-
based organocatalysts. Herein, we show that the combination
of (+)-camphorsulfonic acid (CSA) with cinchonidine results
in an effective organic catalyst, which catalyzed the enan-
tioselective conjugate addition of nitroacetate to R,ꢀ-unsatur-
ated ketones, affording the desired adducts with excellent
enantiomeric excesses.
The reaction between ethyl nitroacetate 1a and trans-4-
phenyl-3-buten-2-one 2a was chosen as a model reaction,
and the catalytic effects of various primary amine catalysts
were examined. The results are summarized in Table 1.
Table 1. Screening of Organocatalysts for the Conjugate Addition
of Ethyl R-Nitro Acetate to trans-4-Phenyl-3-buten-2-onea
eed (%)
entry cat.
additive
t (h) yieldb (%) drc syn/anti
1
2
3
4
5
6
7
8
4
5
6
7
8
8
8
8
9
p-NO2PhCO2H
p-NO2PhCO2H
p-NO2PhCO2H
p-NO2PhCO2H
p-NO2PhCO2H
TsOH
24
9
74
91
97
99
39
59
89
94
80
80
89
87
1:1 77/80
1:1 66/65
1:1 83/83
1:1 0/13
1:1 98/98
1:1 91/90
1:1 94/93
1:1 99/99
1:1 -77/-86
1:1 -77/-84
1:1 99/99
1:1 97/86
(6) For selected excellent examples, see: (a) Chen, W.; Du, W.; Yue,
L.; Li, R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem. 2007, 5,
816. (b) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.;
Melchiorre, P. Org. Lett. 2007, 9, 1403. (c) Kim, H.; Yen, C.; Preston, P.;
Chin, J. Org. Lett. 2006, 8, 5239. (d) Xie, J.-W.; Yue, L.; Chen, W.; Du,
W.; Zhu, J.; Deng, J.-G.; Chen, Y.-C. Org. Lett. 2007, 9, 413. (e) Xie,
J.-W.; Chen, W.; Li, R.; Zeng, M.; Du, W.; Yue, L.; Chen, Y.-C.; Wu, Y.;
Zhu, J.; Deng, J.-G. Angew. Chem., Int. Ed. 2007, 46, 389. (f) Li, P.; Wang,
Y.; Liang, X.; Ye, J. Chem. Commun. 2008, 3302. (g) Ricci, P.; Carlone,
A.; Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P. AdV. Synth. Catal.
2008, 350, 49. (h) Lu, X.; Deng, L. Angew. Chem., Int. Ed. 2008, 47, 7710.
(i) Carlone, A.; Bartoli, G.; Bosco, M.; Pesciaioli, F.; Ricci, P.; Sambri, L.;
Melchiorre, P. Eur. J. Org. Chem. 2007, 5492. (j) Ishihara, K.; Nakano, K.
J. Am. Chem. Soc. 2005, 127, 10504. (k) Singh, R. P.; Bartelson, K.; Wang,
Y.; Su, H.; Lu, X.; Deng, L. J. Am. Chem. Soc. 2008, 130, 2422. (l) Chen,
W.; Du, W.; Duan, Y.-Z.; Wu, Y.; Yang, S.-Y.; Chen, Y.-C. Angew. Chem.,
Int. Ed. 2007, 46, 7667. (m) Martin, N. J. A.; List, B. J. Am. Chem. Soc.
2006, 128, 13368. (n) Wang, X.; Reisinger, C. M.; List, B. J. Am. Chem.
Soc. 2008, 130, 6070. (o) Lu, X.; Liu, Y.; Sun, B.; Cindric, B.; Deng, L.
J. Am. Chem. Soc. 2008, 130, 8134. (p) Reisinger, C. M.; Wang, X.; List,
B. Angew. Chem., Int. Ed. 2008, 47, 8112.
48
14
24
24
24
24
24
24
24
20
(-)-CSA
(+)-CSA
9
(+)-CSAe
10
11
12
10 (+)-CSA
11 (+)-CSA
12 (+)-CSA
a Reactions were performed with 4-phenyl-but-3-en-2-one (0.1 mmol),
ethyl nitroacetate (0.2 mmol), and primary amine (0.01 mmol) in xylene
c
(0.1 mL) at room temperature. b Isolated yield. Determined by H NMR
analysis of the products. d The ee value was determined by chiral HPLC
analysis. e 20 mol % additive.
1
(7) For our work on primary amino acid/amine mediated organocatalysis,
see: (a) Jiang, Z.; Liang, Z.; Wu, X.; Lu, Y. Chem. Commun. 2006, 2801.
(b) Cheng, L.; Han, X.; Huang, H.; Wong, M. W.; Lu, Y. Chem. Commun.
2007, 4143. (c) Cheng, L.; Wu, X.; Lu, Y. Org. Biomol. Chem. 2007, 5,
1018. (d) Wu, X.; Jiang, Z.; Shen, H.-M.; Lu, Y. AdV. Synth. Catal. 2007,
349, 812. (e) Zhu, Q.; Lu, Y. Chem. Commun. 2008, 6315. (f) Han, X.;
Kwiatkowski, J.; Xue, F.; Huang, K.-W.; Lu, Y. Angew. Chem., Int. Ed.
2009, 48, 7604. (g) Zhu, Q.; Lu, Y. Chem. Commun. 2010, 46, 2235. (h)
Jiang, Z.; Yang, H.; Han, X.; Luo, J.; Wong, M. W.; Lu, Y. Org. Biomol.
Chem. 2010, 8, 1368. (i) Jiang, Z.; Lu, Y. Tetrahedron Lett. 2010, 51, 1884.
(8) (a) Rosini, G.; Ballini, R. Synthesis 1988, 833. (b) Charette, A. B.;
Wurz, R. P.; Ollevier, T. HelV. Chim. Acta 2002, 85, 4468. (c) Fornicola,
R. S.; Oblinger, E.; Montgomery, J. J. Org. Chem. 1998, 63, 3528. (d)
Shen, B.; Johnston, J. N. Org. Lett. 2008, 10, 4397.
(1S,2S)-1,2-Diphenylethane-1,2-diamine-derived primary amine
catalysts containing thiourea (4) and sulfonamides (5 and
6), in combination with p-nitrobenzoic acid, were found to
be effective, affording the desired products in excellent yields
and with moderate to good enantioselectivities (entries 1-3).
O-TBS-L-Threonine 7 gave almost racemic products (entry
4). Cinchona alkaloids are privileged chrial structural scaf-
folds in asymmetric catalysis,12 and various cinchona
alkaloids were next investigated. 9-Amino-9-deoxy-epi-
cinchonine (8), combining with p-nitrobenzoic acid or
p-toluenesulfonic acid, afforded the products in low yields
(entries 5 and 6). We reasoned the nature of the counteranion
might be important in the asymmetric induction.13 We thus
(9) For enantioselective Mannich reactions of nitroesters, see: (a) Singh,
A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129,
3466. (b) Singh, A.; Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866.
(c) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362.
(10) Ikariya, T.; Wang, H.; Watanabe, M.; Murata, K. J. Organomet.
Chem. 2004, 689, 1377.
(11) (a) Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem.
2002, 67, 8331. (b) Prieto, A.; Halland, N.; Jørgensen, K. A. Org. Lett.
2005, 7, 3897.
(12) For a recent book, see: Song, C. E., Ed. Cinchoan Alkaloids in
Synthesis & Catalysis: Ligands, Immobilization and Organocatalysis; Wiley-
VCH: Weinheim, 2009.
Org. Lett., Vol. 12, No. 10, 2010
2279