Original
Paper
phys. stat. sol. (a) 203, No. 5 (2006)
843
lites of As, SbTe, AsSb, As Se , Sb Se and AsSe Te indicated with d and I, respectively, while there
2 3 2 3 5
5
remains also a residual amorphous phase.
5 Conclusions
(1) Two approaches were used to analyze the glass transition. One is the linear dependence of the
glass transition temperature T on the logarithm of the heating rateβ . The other is the linear relationship
g
2
between ln(T /β ) and 1/T .
g
g
(2) The numerical factors, n and m depend on the mechanism of nucleation, growth, and the dimen-
sionality of the crystal. In addition, n = m + 1 for as quenched glass containing no nuclei while n = m for
a glass containing a sufficiently large number of nuclei. The kinetic parameters were deduced based on
the mechanism of crystallization. The value of the kinetic exponent (n = 2) for the as quenched glass is
consistent with the mechanism of volume nucleation with one dimensional growth.
(3) Finally, the identification of the crystalline phases reveals the existence of some crystallites of As,
SbTe, AsSb, As Se , Sb Se and AsSe Te dispersed in the remaining amorphous matrix.
2
3
2
3
5
5
References
[1] N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T. Moynihan, J. Am. Ceram. Soc. 66, 233 (1983).
[2] Z. G. Ivanova and E. Cernoskova, Thermochimica Acta 411, 177–180 (2004).
[3] K. F. Kelton, Crystal Nucleation in Liquids and Glasses, Solid State Phys., Vol. 45 (Academic Press, New
York, 1991).
[4] N. Clavaguera, J. Non-Cryst. Solids 162, 40 (1993).
[5] S. A. Khan, M. Zulfequar, and M. Husain, J. Phys. Chem. Solids 123, 463–468 (2002).
[6] J. Vazquez, P. L. Lopez-Alemany, P. Villares, and R. Jimenez-Garay, J. Phys. Chem. Solids 61, 493 (2000).
[7] H. Yinnon and D. R. Uhlmann, J. Non-Cryst. Solids 54, 253 (1983).
[8] A. H. Moharram and M. S. Rasheedy, phys. stat. sol. (a) 169, 33 (1998).
[9] P. L. Lopez-Alemany, J. Vazquez, P. Villares, and R. Jimenez-Garay, J. Alloys Compd. 285, 185–193 (1999).
[10] K. Matusita and S. Sakka, Phys. Chem. Glasses 20, 81 (1979).
[11] H. E. Kissinger, Anal. Chem. 29, 1702 (1957).
[12] G. W. H. Höhne, W. Hemminger, and H.-J. Flammershiem, Differential Scanning Calorimetry (Springer-
Verlag, Berlin, Heidelberg, 1996).
[13] J. Vazquez, P. L. Lopez-Alemany, P. Villares, and R. Jimenez-Garay, Mater. Chem. Phys. 57, 162 (1998).
[14] A. A. Othman, K. Tahon, and M. A. Osman, Physica B 311, 356 (2002).
[15] H. E. Kissinger, J. Res. Natl. Bur. Stand. 57, 217 (1956).
[16] H. S. Chen, J. Non-Cryst. Solids 27, 257 (1978).
[17] J. Vazquez, C. Wagner, P. Villares, R. Jimenez Garay,J. Non-Cryst. Solids 235–237, 548–553 (1998).
[18] S. Mahadevan, A. Giridhar, and A. K. Singh, J. Non-Cryst. Solids 88, 11 (1986).
[19] J. E. Shelby, J. Non-Cryst Solids 34, 111 (1979).
[20] T. Ozawa, Bull. Chem. Soc. Jpn. 38, 1881 (1965).
[21] Yi Qun Gao, W. Wang, F. Q. Zheng, and X. Liu, J. Non-Cryst. Solids 81, 135 (1986).
[22] N. Afify, Physica B 179, 48 (1992).
[23] K. Matusita, T. Komatsu, and R. Yokota, J. Mater. Sci. 19, 291 (1984).
[24] J. A. Augis and J. E. Bennett, J. Therm. Anal. 13, 283 (1978).
© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim