D
J. Li et al.
Letter
Synlett
tion reaction. Finally, the isatin 2a is generated efficiently
from intermediate 5 with the assistance of the hydroxyl
radical.
M.; Hayashi, T. Angew. Chem. Int. Ed. 2006, 45, 3353; Angew.
Chem. 2006, 118, 3431. (d) Mohammadi, S.; Heiran, R.; Herrera,
R. P.; Marqués-López, E. ChemCatChem 2013, 5, 2131.
(7) (a) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104. (b) Hong,
L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023.
(8) (a) Laurent, A. Ann. Chim. Phys. 1840, 3[2], 393. (b) Erdmann, O.
L. J. Prakt. Chem. 1840, 19, 321.
(9) (a) Guyot, A.; Martinet, J. C. R. Hebd. Seances Acad. Sci. 1913, 166,
1625. (b) Martinet, J. C. R. Hebd. Seances Acad. Sci. 1918, 166,
851. (c) Bonnefoy, J.; Martinet, J. C. R. Hebd. Seances Acad. Sci.
1921, 172, 220.
In summary, a novel and efficient method for the oxida-
tion of α-hydroxy N-arylamides to give isatins in the pres-
ence of H2O2 has been developed.20 The utilization of cheap
aqueous hydrogen peroxide as the oxidant provides a clean
synthetic route, with water as the sole byproduct. In view
of the wide functional-group tolerance and the mild reac-
tion conditions, this protocol could be useful and might be
widely adapted in synthetic chemistry. Further applications
of this method to other substrates and detailed mechanistic
investigations are in progress.
(10) (a) Stollé, R. J. Prakt. Chem. 1922, 106, 137. (b) Stollé, R. Ber.
Dtsch. Chem. Ges. 1913, 46, 3915.
(11) (a) Sandmeyer, T. Helv. Chim. Acta 1919, 2, 234. (b) Prinz, W.;
Kayle, A.; Levy, P. R. J. Chem. Res., Synop. 1978, 168. (c) Pinto, A.
C.; Moreira Lapis, A. A.; Vasconcellos da Silva, B.; Bastos, R. S.;
Dupont, J.; Neto, B. A. D. Tetrahedron Lett. 2008, 49, 5639.
(12) Rogness, D. C.; Larock, R. C. J. Org. Chem. 2011, 76, 4980.
(13) (a) Klein, L. L.; Tufano, M. D. Tetrahedron Lett. 2013, 54, 1008.
(b) Chouhan, M.; Senwar, K. R.; Sharma, R.; Grover, V.; Nair, V. A.
Green Chem. 2011, 13, 2553.
(14) (a) Tang, B.-X.; Song, R.-J.; Wu, C.-Y.; Liu, Y.; Zhou, M.-B.; Wei,
W.-T.; Deng, G.-B.; Yin, D.-L.; Li, J.-H. J. Am. Chem. Soc. 2010, 132,
8900. (b) Sun, J.; Liu, B.; Xu, B. RSC Adv. 2013, 3, 5824. (c) Liu, T.;
Yang, H.; Jiang, Y.; Fu, H. Adv. Synth. Catal. 2013, 355, 1169.
(d) Liu, Y.; Chen, H.; Hu, X.; Zhou, W.; Deng, G. J. Eur. J. Org.
Chem. 2013, 4229.
Acknowledgment
We are grateful for financial support from the National Natural Sci-
ence Foundation of China (NSFC) (grant numbers 81373259 and
81573286).
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
(15) Lollar, C. T.; Krenek, K. M.; Bruemmer, K. J.; Lippert, A. R. Org.
Biomol. Chem. 2014, 12, 406.
(16) Huang, P. C.; Gandeepan, P.; Cheng, C.-H. Chem. Commun. 2013,
49, 8540.
References and Notes
(17) Satish, G.; Polu, A.; Ramar, T.; Ilangovan, A. J. Org. Chem. 2015,
80, 5167.
(18) Yue, Q.; Wang, Y.; Hai, L.; Guo, L.; Yin, H.; Wu, Y. Synlett 2016,
27, 1292.
(19) (a) Zhan, Z.; Cheng, X.; Ma, X. J.; Li, J.; Hai, L.; Wu, Y. Tetrahedron
2015, 71, 6928. (b) Ye, Y.; Lee, S.; Sanford, M. S. Org. Lett. 2011,
13, 5464.
(1) (a) Zhang, Y.; Li, Z. J.; Xu, H. S.; Zhang, Y.; Wang, W. RSC Adv.
2011, 1, 389. (b) Wei, W.-T.; Chen, C.-X.; Lu, R.-J.; Wang, J.-J.;
Zhang, X.-J.; Yan, M. Org. Biomol. Chem. 2012, 10, 5245.
(c) Dandia, A.; Parewa, V.; Jain, A. K.; Rathore, K. S. Green Chem.
2011, 13, 2135. (d) Arya, A. K.; Kumar, M. Green Chem. 2011, 13,
1332. (e) Jiang, B.; Wang, X.; Xu, H.-W.; Tu, M.-S.; Tu, S. J.; Li, G.
Org. Lett. 2013, 15, 1540. (f) Pakravan, P.; Kashanian, S.;
Khodaei, M. M.; Harding, F. J. Pharmacol. Rep. 2013, 65, 313.
(g) Chaudhary, D. K.; Ahmad, S.; Maity, S.; Alam, M. S. Pharm.
vol5-iss1/DPL-2013-5-1-285-295.pdf.
(2) Chu, W.; Rothfuss, J.; Zhou, D.; Mach, R. H. Bioorg. Med. Chem.
Lett. 2011, 21, 2192.
(3) Modi, N. R.; Shah, R. J.; Patel, M. J.; Suthar, M.; Chauhan, B. F.;
Patel, L. Med. Chem. Res. 2011, 20, 615; DOI: 10.1007/s00044-
010-9361-y.
(4) Bridges, T. M.; Kennedy, J. P.; Hopkins, C. R.; Conn, P. J.; Lindsley,
C. W. Bioorg. Med. Chem. Lett. 2010, 20, 5617.
(5) Siddiqui, N.; Alam, M. S.; Stables, J. P. Eur. J. Med. Chem. 2011, 46,
2236.
(6) (a) Garden, S. J.; da Silva, R. D.; Pinto, A. C. Tetrahedron 2002, 58,
8399. (b) Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.;
Minnaard, A. J. Org. Lett. 2006, 8, 2715. (c) Shintani, R.; Inoue,
(20) N-Methylisatin (2a); Typical Procedure
A mixture of α-hydroxy amide 1a (152.2 mg, 1.0 mmol) and
30% aq H2O2 (0.68 g, 6.0 mmol, 0.61 mL) was added to DMSO (2
mL), and the mixture was stirred under air at 100 °C for 3 h.
When the reaction was complete (TLC), the mixture was cooled
to r.t., diluted with H2O, and extracted with EtOAc (3 × 10 mL).
The organic layer was washed with sat. brine, dried (Na2SO4),
and evaporated to dryness. The crude residue was purified by
flash chromatography [silica gel, PE–EtOAc (10:1)] to give a red
solid; yield: 143.3 mg (0.89 mmol, 89%); mp 130–133 °C. 1H
NMR (400 MHz, CDCl3): δ = 7.64–7.58 (m, 2 H), 7.15–7.11 (m, 1
H), 6.92 (d, J = 8.0 Hz, 1 H), 3.26 (s, 3 H). 13C NMR (150 MHz,
CDCl3): δ = 183.3, 158.1, 151.4, 138.4, 125.1, 123.8, 117.3, 109.9,
26.2. HRMS (ESI): m/z [M + Na+] calcd for C9H7NNaO2: 184.0374;
found: 184.0370.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–D