Journal of Medicinal Chemistry
Brief Article
(7) Wilbuer, A.; Vlecken, D. H.; Schmitz, D. J.; Kraling, K.; Harms,
K.; Bagowski, C. P.; Meggers, E. Iridium complex with antiangiogenic
properties. Angew. Chem., Int. Ed. Engl. 2010, 49, 3839−3842.
̈
thank the National Cancer Institute Developmental Therapeu-
tics Program for the in vitro testing results of complex 2f.
(8) Leung, C. H.; Zhong, H. J.; Yang, H.; Cheng, Z.; Chan, D. S.; Ma,
V. P.; Wong, C. Y.; Ma, D. L. A metal-based inhibitor of tumor
necrosis factor-α. Angew. Chem., Int. Ed. Engl. 2012, 51, 9010−9014.
(9) (a) Schafer, S.; Sheldrick, W. S. Coligand tuning of the DNA
binding properties of half-sandwich organometallic intercalators:
influence of polypyridyl (pp) and monodentate ligands (L = Cl,
(NH2)2CS, (NMe2)2CS) on the intercalation of (g5-pentamethylcy-
clopentadienyl)-iridium(III)- dipyridoquinoxaline and -dipyridophena-
zine complexes. J. Organomet. Chem. 2007, 692, 1300−1309.
ABBREVIATIONS USED
■
PBN, α-phenyl-N-tert-butylnitrone; ICR mice, Institute of
Cancer Research mice; VEGFR, vascular endothelial growth
factors receptor; (TNF-α), tumor necrosis factor-α; HepG2,
hepatocellular carcinoma cell line; ROS, reactive oxygen
species; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide; DAPI, 4′,6-diamidino-2-phenylindole; PI,
propidium iodide; FITC, fluorescein isothiocyanate; JC-1,
5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine io-
dide; DCFH-DA, dichlorodihydrofluorescein diacetate
(b) Schmitt, F.; Govindaswamy, P.; Suss-Fink, G.; Ang, W. H.;
̈
Dyson, P. J.; Jeanneret, L. J.; Therrien, B. Ruthenium porphyrin
compounds for photodynamic therapy of cancer. J. Med. Chem. 2008,
51, 1811−1816. (c) Sherman, S. E.; Gibson, D.; Wang, A.; Lippard, S.
J. Crystal and molecular structure of cis-Pt[(NH3)2{d(pGpG}], the
principal adduct formed by cis-diamminedichloroplatinum(II) with
DNA. J. Am. Chem. Soc. 1988, 110, 7368−7738. (d) Huang, H.; Zhu,
L.; Reid, B. R.; Drobny, G. P.; Hopkins, P. B. Solution structure of a
cisplatin-induced DNA interstrand cross-link. Science 1995, 270,
1842−1844. (e) Wang, D.; Lippard, S. J. Cellular processing of
platinum anticancer drugs. Nature Rev. Drug Discovery 2005, 4, 307−
320.
REFERENCES
■
(1) (a) Brabec, V. DNA modifications by antitumor platinum and
ruthenium compounds: their recognition and repair. Prog. Nucleic Acid
Res. Mol. Biol. 2002, 71, 1−68. (b) Clarke, M. J. Ruthenium
metallopharmaceuticals. Coord. Chem. Rev. 2003, 236, 209−233.
(c) Keppler, B., Ed. Metal Complexes in Cancer Chemotherapy; VCH,
Weinheim, Germany; New York, 1993. (d) Hartinger, C. G.; Dyson, P.
J. Bioorganometallicchemistryfrom teaching paradigms to medicinal
applications. Chem. Soc. Rev. 2009, 38, 391−401. (e) Hartinger, C. G.;
Metzler-Nolte, N.; Dyson, P. J. Challenges and opportunities in the
development of organometallic anticancer drugs. Organometallics
2012, 31, 5677−5685.
(2) Wirth, S.; Rohbogner, C. J.; Cieslak, M.; Julia, K. B.; Donevski, S.;
Nawrot, B.; Lorenz, I. P. Rhodium(III) and iridium(III) complexes
with 1,2-naphthoquinone-1-oximate as a bidentate ligand: synthesis,
structure, and biological activity. J. Biol. Inorg. Chem. 2010, 15, 429−
440.
(3) (a) Wong, E.; Giandomenico, C. M. Current status of platinum-
based antitumor drugs. Chem. Rev. 1999, 99, 2451−2466. (b) Guo, Z.;
Sadler, P. J. Metals in medicine. Angew. Chem., Int. Ed. Engl. 1999, 38,
1512−1531. (c) Ho, Y. P.; AuYeung, S. C. F.; To, K. K. W. Platinum-
based anticancer agents: innovative design strategies and biological
perspectives. Med. Res. Rev. 2003, 23, 633−655.
(4) Bruijnincx, P. CA.; Sadler, P. J. Controlling platinum, ruthenium,
and osmium reactivity for anticancer drug design. Curr. Opin. Chem.
Biol. 2008, 12, 197−206.
(5) (a) Sava, G.; Bergamo, A. \Ruthenium-based compounds and
tumour growth control. Int. J. Oncol. 2000, 17, 353−365. (b) Galanski,
M.; Arion, V. B.; Jakupec, M. A.; Keppler, B. K. Recent developments
in the field of tumor-inhibiting metal complexes. Curr. Pharm. Des.
2003, 9, 2078−2089. (c) Habtemariam, A.; Melchart, M.; Fernandez,
R.; Parsons, S.; Oswald, I. D. H.; Parkin, A.; Fabbiani, F. P. A.;
Davidson, J. E.; Dawson, A.; Aird, R. E.; Jodrell, D. I.; Sadler, P. J.
Structure−activity relationships for cytotoxic ruthenium(II) arene
complexes containing N,N-, N,O-, and O,O-chelating ligands. J. Med.
Chem. 2006, 49, 6858−6868. (d) Hartinger, C. G.; Jakupec, M. A.;
Zorbas-Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.;
Dyson, P. J.; Keppler, B. K. KP1019, a new redox-active anticancer
agentpreclinical development and results of a clinical phase I study
in tumor patients. Chem. Biodiversity 2008, 5, 2140−2155.
(6) (a) Lau, J. S.; Lee, P. K.; Tsang, K. H.; Ng, C. H.; Lam, Y. W.;
Cheng, S. H.; Lo, K. K. Luminescent cyclometalated iridium(III)
polypyridine indole complexessynthesis, photophysics, electro-
chemistry, protein-binding properties, cytotoxicity, and cellular uptake.
Inorg. Chem. 2009, 48, 708−718. (b) Amouri, H.; Moussa, J.; Renfrew,
A. K.; Dyson, P. J.; Rager, M. N.; Chamoreau, L. M. Discovery,
structure, and anticancer activity of an iridium complex of
diselenobenzoquinone. Angew. Chem., Int. Ed. Engl. 2010, 49, 7530−
7533. (c) Liu, Z.; Habtemariam, A.; Pizarro, A. M.; Fletcher, S. A.;
Kisova, A.; Vrana, O.; Salassa, L.; Bruijnincx, P. C.; Clarkson, G. J.;
Brabec, V.; Sadler, P. J. Organometallic half-sandwich iridium
anticancer complexes. J. Med. Chem. 2011, 54, 3011.
(10) Bernotas, R. C.; Thomas, C. E.; Carr, A. A.; Nieduzak, T. R.;
Adams, G.; Ohlweiler, D. F.; Hay, D. A. Synthesis and radical
scavenging activity of 3,3-dialkyl-3,4-dihydro-isoquinoline 2-oxides.
Bioorg. Med. Chem. Lett. 1996, 6, 1105−1110.
(11) (a) Nakae, D.; Kishida, H.; Enami, T.; Konishi, Y.; Hensley, K.
L.; Floyd, R. A.; Kotake, Y. Effects of phenyl N-tert-butyl nitrone and
its derivatives on the early phase of hepatocarcinogenesis in rats fed a
choline-deficient, L-amino acid-defined diet. Cancer Sci 2003, 94, 26−
31. (b) Floyd, R. A.; Kopke, R. D.; Choi, C. H.; Foster, S. B.; Doblas,
S.; Towner, R. A. Nitrones as therapeutics. Free Radical Biol. Med.
2008, 45, 1361−1374. (c) Floyd, R. A.; Towner, R. A.; Wu, D.;
Abbott, A.; Cranford, R.; Branch, D.; Guo, W. X.; Foster, S. B.; Jones,
I.; Alam, R.; Moore, D.; Allen, T.; Huycke, M. Anti-cancer activity of
nitrones in the ApcMin/+ model of colorectal cancer. Free Radical Res.
2010, 44, 108. (d) Floyd, R. A.; Chandru, H. K.; He, T.; Towner, R.
Anti-cancer activity of nitrones and observations on mechanism of
action. Anticancer Agents Med. Chem. 2011, 11, 373−379.
(12) Crabtree, R. H.; Parnell, C. P. Arene and cyclohexadienyl
complexes as intermediates in the selective catalytic dehydrogenation
of cyclohexenes to arenes. Organometallics 1985, 4, 519−523.
(13) The IC50 is very close to the results reported in Sbovata, S. M.;
Bettio, F.; Mozzon, M.; Bertani, R.; Venzo, A.; Benetollo, F.; Michelin,
R. A.; Gandin, V.; Marzano, C. Cisplatinum and transplatinum
complexes with benzyliminoether ligands: synthesis, characterization,
structure−activity relationships, and in vitro and in vivo antitumor
efficacy. J. Med. Chem. 2007, 50, 4775−4784.
(14) Jung, Y.; Lippard, S. J. Direct cellular responses to platinum-
induced DNA damage. Chem. Rev. 2007, 107, 1387−1407.
(15) Bosea, R. N.; Maurmann, L.; Mishur, R. L.; Yasui, L.; Gupta, S.;
Grayburn, W. S.; Hofstetter, H.; Salley, T. Non-DNA-binding
platinum anticancer agents: cytotoxic activities of platinum−phosphato
complexes towards human ovarian cancer cells. Proc. Natl. Acad. Sci. U.
S. A. 2008, 105, 18314−18319.
(16) (a) Fu, Y.; Romero, M. J.; Habtemariam, A.; Snowden, M. E.;
Song, L.; Clarkson, G. J.; Qamar, J.; Pizarro, A. M.; Unwin, P. R.;
Sadler, P. J. The contrasting chemical reactivity of potent isoelectronic
iminopyridine and azopyridineosmium(II) arene anticancer com-
plexes. Chem. Sci. 2012, 3, 2485−2494. (b) Betanzos-Lara, S.; Liu,
Z.; Habtemariam, A.; Pizarro, A. M.; Qamar, B.; Sadler, P. J.
Organometallic ruthenium and iridium transfer-hydrogenation cata-
lysts using coenzyme NADH as a cofactor. Angew. Chem., Int. Ed.
2012, 51, 3897−3900.
E
dx.doi.org/10.1021/jm4004973 | J. Med. Chem. XXXX, XXX, XXX−XXX