Organic Process Research & Development
Article
(
2
i) Mai, W.; Yuan, J.; Li, Z.; Yang, L.; Xiao, Y.; Mao, P.; Qu, L. Synlett
ASSOCIATED CONTENT
■
012, 23, 938−942.
*
S
Supporting Information
(12) There are no reported examples of (hetero)arene decarbox-
1
H and 13C NMR spectra and additional experimental data
ylative benzylation. For other examples of decarboxylative benzylation,
see: (a) Torregrosa, R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.;
Tunge, J. A. J. Am. Chem. Soc. 2010, 132, 9280−9282. (b) Zhang, W.-
W.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2010, 75, 5259−5264.
(c) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev.
(
AUTHOR INFORMATION
■
*
2
011, 111, 1846−1913. (d) Recio, A., III; Heinzman, J. D.; Tunge, J.
A. Chem. Commun. 2012, 48, 142−144.
13) Both chloroacetone and ethyl 2-chloroacetoactate are
(
Notes
commercially available in bulk quantities, whereas the chloroaceto-
phenone used in the previous route to prepare the imidazopyridazine
necessitates an additional synthetic step (Scheme 1, step 2).
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(14) (a) Stanovnik, B.; Tisler, M. Tetrahedron 1967, 23, 2739−46.
■
(b) Abignente, E.; Arena, F.; Luraschi, E.; Saturnino, C.; Rossi, F.;
We thank John Howell, C. Brad Held, and Michele Lake for
their contributions to this work. We are grateful to Jared
Fennell and Utpal Singh for helpful discussions.
Berrino, L.; Cenicola, M. L. Farmaco 1992, 47, 931−944. (c) Pevarello,
P.; Garcia, C. A. M.; Rodriguez, H. A.; Saluste, C.-G. P.; Ramos, L. F.
J.; Gonzalez, C. E.; Oyarzabal, S. J. Preparation of imidazo[1,2-b]
pyridazines as protein kinase inhibitors. U.S. Pat. Appl. Publ. US/
0046127, 2011; A1 741765, 2010. (d) Banno, H.; Hirose, M.;
Kurasawa, O.; Langston, S. P.; Mizutani, H.; Shi, Z.; Visiers, I.; Vos, T.
J.; Vyskocil, S. Heteroaryls as PI3K and/or mTOR inhibitors and their
preparation and use in the treatment of diseases. U.S. Pat. Appl. Publ.
US/0256172, 2010; A1 657801, 2010.
REFERENCES
■
(
(
1) Dameshek, W. Blood 1951, 6, 372−375.
2) Kralovics, R.; Passamonti, F.; Buser, A. S.; Teo, S. S.; Tiedt, R.;
Passweg, J. R.; Tichelli, A.; Cazzola, M.; Skoda, R. C. N. Engl. J. Med.
005, 352, 1779−1790.
3) Burkholder, T. P.; Clayton, J. R.; Ma, L. Amino pyrazole
2
(
(15) See Table S1 in Supporting Information for more details
(16) See Table S2 in Supporting Information for more details
(17) When 9 is used as the substrate (Scheme 1), the endo-isomer
compounds. U.S. Pat. Appl. Publ. US/0152181, 2010; A1 20100617;
CAN 153:97762, CAN 21010:753991.2010.
4
(
4) Mitchell, D.; Cole, K. P.; Pollock, P. M.; Coppert, D. M.;
Burkholder, T. P.; Clayton, J. R. Org. Process Res. Dev. 2012, 16, 70−
1.
5) Acetal with high levels of residual methanol led to longer reaction
times.
6) The cost of shut-down and relining the incinerator must be
considered as a contributor to the cost of manufacturing.
7) Wilson, J. D. Incineration Design Limitations. In Proceedings of
the International Conference on Thermal Treatment Technologies and
Hazardous Waste Combustors (IT3/HWC); University of Maryland, Air
and Waste Management Association: College Park, 2004.
8) Plugging/fouling of thermal media in regenerative thermal
oxidizers due to particulate SiO formation can lead to additional
forms in only trace quantities.
(18) Up to 5 equiv trifluoroacetic acid or 10% H PO had no effect
3
4
8
(
on the outcome of the reaction. For additional details on catalyst and
solvent screening, see Tables S3 and S4 in Supporting Information.
(19) Generally, only 1−2 equiv of the excess NMO remained at the
end of the reaction with the remainder largely decomposed in a
competing V-catalyzed reaction to N-methylmorpholine. See reference
(
(
2
0 for details on the decomposition of NMO in the presence of
transition metals.
20) Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P. Prog. Polym. Sci.
001, 26, 1763−1837.
21) N,N-Dimethylacetamide (DMAC). Proposed Registration,
(
2
(
(
2
Evaluation, Authorisation and Restriction of Chemicals (REACH)
list item and Substance of Very High Concern (SVHC) by the EU,
European Chemicals Agency (ECHA), Annex XV Dossier: IDENTI-
manufacturing costs associated with incineration shutdown and
thermal media replacement. See: Hickstein, B.; Meynhardt, B.;
Niemeier, O.; Weber, D. Chem. Eng. Technol. 2012, 35, 2023−2029.
(
9) For recent reviews on direct arylation, see: (a) Alberico, D.; Scott,
22) We were hesitant to perform the distillation at ambient pressure
M. E.; Lautens, M. Chem. Rev. 2007, 107, 174−238. (b) Campeau, L.-
C.; Stuart, D. R.; Fagnou, K. Aldrichim. Acta 2007, 40, 35−41.
(
(
c) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200−205. (d) Li, B.-J.;
due to safety concerns over heating the neat NMO (as very little
toluene was present in the lower NMO phase), but use of a higher
temperature may have allowed further water removal and the ability to
maintain a liquid NMO phase. Crystallization of NMO from this
solution upon cooling likely would have further complicated this
method.
Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949−957. (e) Ackermann, L.;
Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792−9826.
(
(
2
2
(
(
2
f) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269−10310.
g) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38,
447−2464. (h) Lei, A.; Liu, W.; Liu, C.; Chen, M. Dalton Trans.
010, 39, 10352−10361.
(23) The WFE used for development was glass (Pope Scientific) and
10) For recent reviews on decarboxylative cross-coupling, see:
used a Teflon 2 in. × 13 in. distillation column with surface area of
a) Gooßen, L. J.; Rodriguez, N.; Gooßen, K. Angew. Chem., Int. Ed.
3
0
.033 m .
24) The manufacturer COA for “anhydrous” NMO states 2.4%
water by KF, but it is believed to rapidly pick up atmospheric moisture
upon opening of the container; NMO·H O is 13.3% water by mass.
008, 47, 3100−3120. (b) Rodriguez, N.; Gooßen, L. J. Chem. Soc.
(
Rev. 2011, 40, 5030−5048. (c) Cornella, J.; Larrosa, I. Synthesis 2012,
4, 653−676.
11) For examples of direct benzylation reactions, see: (a) Lapointe,
4
(
2
(25) For examples of palladium-catalyzed decarboxylative cross-
D.; Fagnou, K. Org. Lett. 2009, 11, 4160−4163. (b) Verrier, C.;
coupling of (hetero)arenes, see: (a) Forgione, P.; Brochu, M.-C.; St-
Onge, M.; Thesen, K. H.; Bailey, M. D.; Bilodeau, F. J. Am. Chem. Soc.
Hoarau, C.; Marsais, F. Org. Biomol. Chem. 2009, 7, 647−650.
(
(
c) Ackermann, L. Chem. Commun. 2010, 46, 4866−4877.
d) Ackermann, L.; Barfuesser, S.; Pospech, J. Org. Lett. 2010, 12,
2
006, 128, 11350−11351. (b) Bilodeau, F.; Brochu, M.-C.; Guimond,
7
2
24−726. (e) Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
N.; Thesen, K. H.; Forgione, P. J. Org. Chem. 2010, 75, 1550−1560.
(c) Rodriguez, N.; Gooßen, L. J. Chem. Soc. Rev. 2011, 40, 5030−5048.
(d) Mitchell, D.; Coppert, D. M.; Moynihan, H. A.; Lorenz, K. T.;
Kissane, M.; McNamara, O. A.; Maguire, A. R. Org. Process Res. Dev.
2011, 15, 981−985. (e) Kissane, M.; McNamara, O. A.; Mitchell, D.;
010, 12, 1360−1363. (f) Ackermann, L.; Barfuesser, S.; Kornhaass,
C.; Kapdi, A. R. Org. Lett. 2011, 13, 3082−3085. (g) Sahnoun, S.;
Messaoudi, S.; Brion, J.-D.; Alami, M. ChemCatChem 2011, 3, 893−
897. (h) Zhu, Y.; Rawal, V. H. J. Am. Chem. Soc. 2011, 134, 111−114.
2
80
dx.doi.org/10.1021/op300344m | Org. Process Res. Dev. 2013, 17, 273−281