to afford the desired cycloadduct 10 in 83% yield with high
diastereoselectivity (20:1). After a one-pot conversion of the
N-benzyl group into the N-carbomethoxy group, the optically
pure γ-lactone 11 (>99% ee) was obtained by recrystalli-
Scheme 1. Synthetic Strategy for (-)-Kainic Acid (1)
3
zation. Subsequent reduction of the acetal with Et SiH and
TFA furnished lactone 12. Construction of the 4-propenyl
group was then achieved by a three-step transformation
involving a modified Julia olefination. Thus, after treatment
of 12 with methyllithium in toluene, a THF solution of
R-lithiated methyl phenyl sulfone 13 was added to the
reaction mixture to provide the desired diol 14 as a
diastereomeric mixture. Neither epimerization at the C-4
position nor a formation of dimethylcarbinol was observed.
TMSOTf-catalyzed acetylation of 14 to the corresponding
diacetate, followed by reductive treatment with catalytic
16
amount of mercury chloride and magnesium powder, gave
dipolar cycloaddition of an azomethine ylide to the chiral
butenolide 5.
1
5 bearing the isopropenyl group in high yield (Scheme 2).
Synthesis of (-)-kainic acid (1) commenced with a large-
scale preparation of chiral butenolide 8 by a modification
of the reported methods. We have found that photooxygen-
ation of furfural (6) proceeded with bubbling air under
sunlight instead of bubbling oxygen under irradiation with
Scheme 2. Synthesis of the Disubstituted Pyrrolidine Ring
12
a high-pressure mercury lamp. Thus, bubbling air through
an ethanolic solution of furfural in the presence of Rose
Bengal under the sun gave the desired butenolide 7. We have
also improved the subsequent enzymatic dynamic kinetic
resolution of 7.13 When the reaction was carried out with
lipase AK in a higher concentration of 7 in vinyl acetate as
solvent, the reaction time was dramatically shortened and
the desired acetoxy butenolide 8 (93% ee) was obtained in
a quantitative yield.
The crucial 1,3-dipolar cycloaddition of the chiral buten-
14
olide 8 with the azomethine ylide took place smoothly upon
1
5
treatment of a mixture of 8 and 9 with 10 mol % of TFA
(
10) For a recent review, see ref 3. For selected examples, see: (a)
Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Chem. Soc., Chem. Commun.
988, 1204. (b) Takano, S.; Sugihara, T.; Satoh, S.; Ogasawara, K. J. Am.
1
Chem. Soc. 1988, 110, 6467. (c) Baldwin, J. E.; Moloney, M. G.; Parsons,
A. F. Tetrahedron 1990, 46, 7263. (d) Jeong, N.; Yoo, S.-E.; Lee, S. J.;
Lee, S. H.; Chung, Y. K. Tetrahedron Lett. 1991, 32, 2137. (e) Barco, A.;
Benetti, S.; Pollini, G. P.; Spalluto, G.; Zanirato, V. J. Chem. Soc., Chem.
Commun. 1991, 390. (f) Cooper, J.; Knight, D. W.; Gallagher, P. T. J. Chem.
Soc., Perkin Trans. 1 1992, 553. (g) Takano, S.; Inomata, K.; Ogasawara,
K. J. Chem. Soc., Chem. Commun. 1992, 169. (h) Hatakeyama, S.;
Sugawara, K.; Takano, S. J. Chem. Soc., Chem. Commun. 1993, 125. (i)
Yoo, S.-E.; Lee, S. H. J. Org. Chem. 1994, 59, 6968. (j) Hanessian, S.;
Ninkovic, S. J. Org. Chem. 1996, 61, 5418. (k) Nakada, Y.; Sugahara, T.;
Ogasawara, K. Tetrahedron Lett. 1997, 38, 857. (l) Bachi, M. D.; Melman,
A. J. Org. Chem. 1997, 62, 1896. (m) Miyata, O.; Ozawa, Y.; Ninomiya,
I.; Naito, T. Synlett 1997, 275. (n) Rubio, A.; Ezquerra, J.; Escribano, A.;
Remuinan, M. J.; Vaquero, J. J. Tetrahedron Lett. 1998, 39, 2171. (o) Cossy,
J.; Cases, M.; Pardo, D. G. Tetrahedron 1999, 55, 6153. (p) Campbell, A.
D.; Taylor, R. J. K.; Raynham, T. M. Chem. Commun. 1999, 245. (q)
Chevliakov, M. V.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 11139.
With the key cis-3,4-disubstituted pyrrolidine intermediate
in hand, we next focused our attention on the stereoselective
introduction of carboxyl group at the C-2 position. For this
purpose, we initially tested a directing effect of the C-3
substituent on the selective lithiation of N-Boc-protected
1
7
(
r) Hirasawa, H.; Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 2001,
2, 7587. (s) Clayden, J.; Menet, C. J.; Tchabanenko, K. Tetrahedron 2002,
8, 4727. (t) Trost. B. M.; Rudd, M. T. Org. Lett. 2003, 5, 1467. (u)
pyrrolidine. Thus, the nitrogen and hydroxyl groups of 15
4
5
were protected with Boc and MOM groups, respectively, and
Anderson, J. C.; Whiting, M. J. Org. Chem. 2003, 68, 6160.
11) (a) Tremblay, J.-F. Chem. Eng. News 2000, 78(1), 14. (b) Tremblay,
J.-F. Chem. Eng. News 2000, 78(10), 31.
12) (a) Moradei, O. M.; Paquette, L. A. Org. Synth. 2003, 80, 66. (b)
Gollnick, K.; Griesbeck, A. Tetrahedron 1985, 41, 2057.
13) (a) Brinksma, J.; Deen van der, H.; Oeveren van, A.; Feringa, B.
L. J. Chem. Soc., Perkin Trans. 1 1998, 4159. (b) Deen van der, H.; Cuiper,
A. D.; Hof, R. P.; Oeveren van, A.; Feringa, B. L.; Kellogg, R. M. J. Am.
Chem. Soc. 1996, 118, 3801.
(
(14) (a) Hosomi, A.; Sakata, Y.; Sakurai, H. Chem. Lett. 1984, 1117.
(b) Padwa, A.; William, D. Organic Syntheses; Wiley: New York, 1993;
Collect. Vol. VIII, p 231.
(15) Terao, Y.; Kotaki, H.; Imai, N.; Achiwa, K. Chem. Pharm. Bull.
1985, 33, 2762.
(16) (a) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833. (b)
Lee, G. H.; Lee, H. K.; Choi, E. B.; Kim, B. T.; Pak, C. S. Tetrahedron
Lett. 1995, 36, 5607.
(
(
4338
Org. Lett., Vol. 7, No. 20, 2005