collected by centrifugation, washed several times with methanol, and
vacuum-dried overnight. All solutions used methanol as the solvent.
Preparation of Pd@ZIF-8@Am-TpPa: A tetrahydrofuran solution (50 mL)
containing Pd@ZIF-8 (50 mg) and Pa (15 mg, 0.14 mmol) was stirred
for 5 min. Next, 5 mL of another tetrahydrofuran solution containing
Tp (20 mg, 0.1 mmol) was added slowly. The reaction proceeded under
magnetic stirring for 24 h. The products were collected by filtering, washed
three times with tetrahydrofuran, and vacuum-dried overnight.
Preparation of Pd@H-TpPa: A 10 mL glass vial was charged with Pd@
ZIF-8@Am-TpPa (50 mg), 1,4-dioxane (2 mL), and aqueous acetic acid
(3 m, 350 µL). The vial was then sealed and left undisturbed for 3 d at
room temperature. The yellow precipitate was collected by centrifugation
and washed with tetrahydrofuran, water, and acetone, separately. The
collected powder was dried at 60 °C under vacuum for 12 h to give a
yellow powder with an 80% isolated yield. The Pd content in Pd@H-
TpPa was 5 mmol g−1, as determined by ICP.
[1] Q. L. Zhu, Q. Xu, Chem 2016, 1, 220.
[2] S. F. Tan, G. Bisht, U. Anand, M. Bosman, X. E. Yong, U. Mirsaidov,
J. Am. Chem. Soc. 2018, 140, 11680.
[3] J. Lee, S. M. Kim, I. S. Lee, Nano Today 2014, 9, 631.
[4] a) Z. Li, M. Li, Z. Bian, Y. Kathiraser, S. Kawi, Appl. Catal., B 2016,
188, 324; b) J. Li, S. Song, Y. Long, S. Yao, X. Ge, L. Wu, Y. Zhang,
X. Wang, X. Yang, H. Zhang, Chem. Sci. 2018.
[5] a) H. Chen, K. Shen, Q. Mao, J. Chen, Y. Li, ACS Catal. 2018, 8,
1417; b) Q. Yue, J. Li, Y. Zhang, X. Cheng, X. Chen, P. Pan, J. Su,
A. A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, J. Am. Chem. Soc.
2017, 139, 15486; c) L. Shang, R. Shi, G. I. N. Waterhouse, L.-Z. Wu,
C.-H. Tung, Y. Yin, T. Zhang, Small Methods 2018, 2, 1800105.
[6] a) J. Lee, J. C. Park, H. Song, Adv. Mater. 2008, 20, 1523; b) S. Wang,
Y. Fan, J. Teng, Y. Z. Fan, J. J. Jiang, H. P. Wang, H. Grutzmacher,
D. Wang, C. Y. Su, Small 2016, 12, 5702.
[7] X. J. Wu, D. Xu, Adv. Mater. 2010, 22, 1516.
Preparation of Pd@TpPa:
A tetrahydrofuran solution (50 mL)
[8] a) L. S. Lin, J. Song, H. H. Yang, X. Chen, Adv. Mater. 2018, 30;
b) Y. Liu, W. Zhang, S. Li, C. Cui, J. Wu, H. Chen, F. Huo, Chem.
Mater. 2014, 26, 1119; c) M. Wan, X. Zhang, M. Li, B. Chen, J. Yin,
H. Jin, L. Lin, C. Chen, N. Zhang, Small 2017, 13, 1701395.
[9] a) C. H. Kuo, Y. Tang, L. Y. Chou, B. T. Sneed, C. N. Brodsky,
Z. Zhao, C. K. Tsung, J. Am. Chem. Soc. 2012, 134, 14345;
b) T. Zeng, X. L. Zhang, S. H. Wang, H. Y. Niu, Y. Q. Cai, Environ.
Sci. Technol. 2015, 49, 2350; c) J. Yang, F. Zhang, H. Lu, X. Hong,
H. Jiang, Y. Wu, Y. Li, Angew. Chem., Int. Ed. 2015, 54, 10889;
d) B. Li, J. G. Ma, P. Cheng, Angew. Chem., Int. Ed. 2018, 57, 6834.
[10] D. Farrusseng, A. Tuel, New J. Chem. 2016, 40, 3933.
[11] a) A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger,
O. M. Yaghi, Science 2005, 310, 1166; b) C. S. Diercks, O. M. Yaghi,
Science 2017, 355, eaal1585.
[12] N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 2016, 1, 16068.
[13] a) S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su,
W. Wang, J. Am. Chem. Soc. 2011, 133, 19816; b) H. C. Ma, J. L. Kan,
G. J. Chen, C. X. Chen, Y. B. Dong, Chem. Mater. 2017, 29, 6518;
c) E. Rozhko, A. Bavykina, D. Osadchii, M. Makkee, J. Gascon,
J. Catal. 2017, 345, 270; d) S. Lu, Y. Hu, S. Wan, R. McCaffrey,
Y. Jin, H. Gu, W. Zhang, J. Am. Chem. Soc. 2017, 139, 17082;
e) L. P. Jing, J. S. Sun, F. Sun, P. Chen, G. Zhu, Chem. Sci. 2018,
9, 3523; f) D. Mullangi, D. Chakraborty, A. Pradeep, V. Koshti,
C. P. Vinod, S. Panja, S. Nair, R. Vaidhyanathan, Small 2018, 14,
1870169; g) X. Shi, Y. Yao, Y. Xu, K. Liu, G. Zhu, L. Chi, G. Lu, ACS
Appl. Mater. Interfaces 2017, 9, 7481.
containing Pd NPs (20 mL) and Pa (15 mg, 0.14 mmol) was stirred for
5 min. Next, 5 mL of another tetrahydrofuran solution containing Tp
(20 mg, 0.1 mmol) was slowly added. The reaction proceeded under
magnetic stirring for 24 h. The products were collected by filtering,
washed three times with tetrahydrofuran, and vacuum-dried overnight.
Then, a 10 mL glass vial was charged with the as-synthesized products
(50 mg), 1,4-dioxane (2 mL), and aqueous acetic acid (3 m, 350 µL). The
vial was then sealed and left undisturbed for 3 d at room temperature.
The collected powder was dried at 60 °C under vacuum for 12 h.
Reduction of 4-Nitrophenol by Pd@H-TpPa: Typically, the catalytic
process proceeded under ambient conditions. First, 6 mL of NaBH4
(2 mg mL−1) and 8 mL of 4-nitrophenol (0.18 × 10−3 m) in water were
mixed in a flask. Then, a mixture of 5 mL of catalyst (2 mg mL−1) was
added to the solution. After adding the as-prepared catalyst, the color
of the 4-nitrophenol solution gradually faded from bright yellow to
colorless as the reaction proceeded. The conversion of 4-nitrophenol to
4-aminophenol was monitored by recording the UV–vis spectra at short
intervals in the range of 250–550 nm. On the basis of the change in the
spectral intensity at λ = 400 nm as a function of time, the rate constants
for the catalytic hydrogenation of 4-nitrophenol were determined.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
[14] a) W. Cao, W. D. Wang, H.-S. Xu, I. V. Sergeyev, J. Struppe, X. Wang,
F. Mentink-Vigier, Z. Gan, M. X. Xiao, L. Y. Wang, G. P. Chen,
S. Y. Ding, S. Bai, W. Wang, J. Am. Chem. Soc. 2018, 140, 6969;
b) G. Lin, H. Ding, R. Chen, Z. Peng, B. Wang, C. Wang, J. Am.
Chem. Soc. 2017, 139, 8705.
[15] Y. Peng, W. K. Wong, Z. Hu, Y. Cheng, D. Yuan, S. A. Khan, D. Zhao,
Chem. Mater. 2016, 28, 5095.
[16] W. Niu, L. Zhang, G. Xu, ACS Nano 2010, 4, 1987.
Acknowledgements
The authors thank the National Natural Science Foundation of China
(Nos. 51672046, 51672047, 51472050, and 21403238), the Open Project
Program of the State Key Laboratory of Photocatalysis on Energy and
Environment (No. SKLPEE-KF201815), and Fuzhou University Testing
Fund of precious apparatus (2018T001).
[17] a) K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo,
H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA
2006, 103, 10186; b) X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen,
Angew. Chem., Int. Ed. 2006, 45, 1557.
Conflict of Interest
[18] S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine,
R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524.
The authors declare no conflict of interest.
[19] B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine,
R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328.
[20] J. García-Aguilar, M. Navlani-García, Á. Berenguer-Murcia, K. Mori,
Y. Kuwahara, H. Yamashita, D. Cazorla-Amorós, Langmuir 2016, 32,
12110.
Keywords
covalent organic frameworks, metal nanoparticles, nanocages,
nanoreactors, yolk–shell
[21] a) Y. Huang, Y. Zhang, X. Chen, D. Wu, Z. Yi, R. Cao, Chem.
Commun. 2014, 50, 10115; b) G. Lu, S. Li, Z. Guo, O. K. Farha,
B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene,
H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang,
Received: October 23, 2018
Revised: November 22, 2018
Published online:
©
1804419 (7 of 8)
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Small 2018, 1804419