the previously transition metal nanoparticles[17-19]
.
References
The Co-MOF microflowers have also been fabricated by
spray method, which are characterized by SEM, FT-IR, XRD
and TGA. The SEM images show that the morphology of
Co-MOFs is microflower, but the diameter of Co-MOF
microflowers is two times longer than that of NiCo-MOF
microflowers (Figure S6). The FT-IR spectrum of Co-MOF
microflowers is similar to the NiCo-MOFs (Figure S7a), which
1.
2.
Z. Karimi, A. Morsali, J. Mater. Chem. A 2013, 1, 3047.
J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T.
Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
Y. J. Zhai, J. H. Li, X. Y. Chu, M. Z. Xu, F. J. Jin, X. Li,
X. Fang, Z. P. Wei, X. H. Wang, J. Alloys Compd. 2016,
672, 600.
3.
4.
S. Zhang, L. Li, S. Zhao, Z. Sun, M. Hong, J. Luo, J.
Mater. Chem. A 2015, 3, 15764.
2
indicates H BDC has been deprotonated and coordinates with
2
+
Co successfully. The XRD pattern of Co-MOF microflowers
have two sharp peaks at 8.88° and 15.73°, corresponding to the
two crystal faces of [-200] and [-011] in MOF-71 (Figure S7b).
The TGA curve of Co-MOF microflowers shows a distinct
weight loss at 410 ℃, ascribing to the decomposition of
Co-MOF microflowers (Figure S7c). The Co-MOF
microflowers are also used to catalyze the reduction of 4-NP.
The reduction of 4-NP is completed after 15 min with Co-MOF
microflowers (Figure S8a). The k of Co-MOF microflowers is
5.
6.
B. I. Kharisov, Recent Pat. Nanotech. 2008, 2, 190.
O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,
M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
S. Furukawa, J. Reboul, S. Diring, K. Sumida, S.
Kitagawa, Chem. Soc. Rev. 2014, 43, 5700.
S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang, K. Liu, H.
Zheng, J. Sun, S. Wang, R. Cao, Adv. Mater. 2017, 29,
1700286.
7.
8.
9.
J. Han, M. Zhang, G. Chen, Y. Zhang, Q. Wei, Y. Zhuo, G.
Xie, R. Yuan, S. Chen, J. Mater. Chem. B 2017, 5, 8330.
-
1
-1
0
.126 min and the TOF value is 52.86 h (Figure S8b). It
proves that the synergistic effect between bimetallic MOF
accelerates the catalytic reaction.
10. P. Wang, H. Li, Q. Gao, P.-Z. Li, X. Yao, L. Bai, N. Kim
Truc, R.-Q. Zou, Y. Zhao, J. Mater. Chem. A 2014, 2,
1
8731.
1
1
1
1. L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang, X.
Zhao, Adv. Funct. Mater. 2017, 27, 1703455.
2. H. Wang, X. Li, X. Lan, T. Wang, ACS Catal. 2018, 8,
2
121.
3. Y. N. Li, S. Wang, Y. Zhou, X. J. Bai, G. S. Song, X. Y.
Zhao, T. Q. Wang, X. Qi, X. M. Zhang, Y. Fu, Langmuir
2
017, 33, 1060.
1
1
4. G. Zhang, J. Zhang, P. Su, Z. Xu, W. Li, C. Shen, Q.
Meng, Chem. Commun. 2017, 53, 8340.
5. S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K.
Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J.
Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S.
Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
1
1
6. A. Elfiad, D. C. Boffito, S. Khemassia, F. Galli, S.
Chegrouche, L. Meddour-Boukhobza, Can. J. Chem. Eng.
2
018, 96, 1566.
7. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Appl.
Catal. A: Gen. 2004, 268, 61.
Figure 3. UV-Vis absorption spectra of the 4-NP reduction
versus reaction time under the catalysis of (a) NiCo-MOF
microflowers and (c) NiCo-MOF bulk crystals. Plots of
18. S. Bai, X. Shen, G. Zhu, M. Li, H. Xi, K. Chen, ACS Appl.
Mater. Inter. 2012, 4, 2378.
ln(c
0
/c
t
) versus reaction time for the 4-NP reduction with (b)
19. L. Ma, X. Shen, G. Zhu, Z. Ji, H. Zhou, Carbon 2014, 77,
255.
NiCo-MOF microflowers and (d) NiCo-MOF bulk crystals.
4
. Conclusion
In summary, bimetallic NiCo-MOF microflowers with
uniform crystal structures have been fabricated by spray
method, which are consisted of 2D nanosheets. The Ni and Co
are homogeneous dispersed throughout the whole NiCo-MOF
microflowers. Owing to the larger exposed surface areas and
synergistic effect, the k and TOF value of NiCo-MOF
microflowers, as catalysts for the reduction of 4-NP, are 0.663
-
1
-1
min and 137.9 h , which are two times higher than
NiCo-MOF bulk crystals. The good catalytic performance of
NiCo-MOF microflowers will inspire the development of
bimetallic MOFs with hierarchical nanostructures for advanced
applications.
Acknowledgement
This work was supported by the National Natural Science
Foundation of China (21503037), Fundamental Research Funds
for the Central Universities (N160504002, N170503010) and
Open Project of State Key Laboratory of Supramolecular
Structure and Materials (sklssm201804, sklssm201822).