10.1002/chem.201900320
Chemistry - A European Journal
ARTICLE
under Ar atmosphere to obtain the ultimate carbon-supported bimetal
catalyst: bimetallic PtNi2 carbon nanosheets (PtNi2@CNS-400, 500, 600
or others). After cooling to room temperature, the products were washed
with ethanol and deionized water until pH=7. Ultimately, the
nanocomposites were filtrated under reduced pressure and dried at 120 °C
overnight. 3DP, PtNi1@3DP,PtNi1.5@3DP, PtNi3@3DP were also dealt
with the same procedures as PtNi2@3DP to obtain CNS, PtNi1@CNS,
PtNi1.5@CNS, PtNi3@CNS, respectively.
[1]
[2]
a) Y. Q. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat, H. J. Fan, Adv.
Energy Mater. 2016, 6, 1600221; b) S. Pacala, R. Socolow, Science
2004, 305, 968-972.
a) J. Sun, D. K. Zhong, D. R. Gamelin, Energ. Environ. Sci. 2010, 3,
1252-1261; b) N. S. Lewis, D. G. Nocera, PNAS 2006, 103, 15729-
15735; c) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev.
2015, 44, 2060-2086; d) J. A. Turner, Science 1999, 285, 687-689.
a) X. Tong, Y. F. Zhou, L. Jin, K. Basu, R. Adhikari, G. S. Selopal, X.
Tong, H. G. Zhao, S. H. Sun, A. Vomiero, Z. M. M. Wang, F. Rosei, Nano
Energy 2017, 31, 441-449; b) S. E. Hosseini, M. A. Wahid, Renew. Sust.
Energy Rev. 2016, 57, 850-866; c) Y. Zhang, R. Huang, Z. Feng, H. Liu,
C. Shi, J. Rong, B. Zong, D. Su, J. Energy Chem. 2016, 25, 349-353.
R. Gao, G. Yu, W. Chen, G.-D. Li, S. Gao, Z. Zhang, X. Shen, X. Huang,
X. Zou, ACS Appl. Mater. Interfaces 2018, 10, 696-703.
[3]
Electrochemical study
The electrochemical measurement was conducted at room temperature
(25 ± 1 °C) with a standard three-electrode system controlled by a
CHI660E Electrochemical Workstation (Shanghai CH Instrument, China).
A modified glassy carbon electrode (GCE, 3 mm in diameter) using Pt-
Ni2@CNS-600 was used as the working electrode (WE), a saturated
calomel electrode (SCE) was used as the reference electrode (RE), and a
graphite rod was used as the counter electrode (CE). The
homogeneous catalyst ink was prepared by mixing catalyst powder (10
mg) with 40 L of 5 wt% Nafion solution (Alfa Aesar) , 500 L of ethanol
and 460 L of deionized water, following by a strong ultrasonic treatment
for 30 min. For preparation of the working electrode, the GCE was
polished with 1.0, 0.3 and 0.05 m Alpha Alumina Powder in sequence
to obtain a mirror-like surface, subsequently rinsed with deionized water,
and then the catalyst ink (7 L) was dripped onto a glassy carbon disk
electrode. Hence the loadings of Pt on the electrode were about 0.612 μg
cm-2 for PtNi2@CNS-600. The catalyst layer was allowed to dry under
ambient conditions before an electrochemical measurement. All the
polarization curves were iR-corrected as well as the presented potentials
in our work were converted to a commonly used reversible hydrogen
electrode (ERHE) with Nernst equation using 0.5 M H2SO4 as the electrolyte
solution. The conversion formula for the SCE reference electrodes as
follows: ERHE = E (SCE) + 0.2412 + 0.0594 * pH. For the HER test, the
Linear scanning curves were measured between 0 V and -0.6 V (vs. RHE)
at a scan rate of 5 mV s-1 in a 0.5 mol L−1 H2SO4 aqueous solution. The
Tafel plot is assigned to the equation η = b log (j) + a (where η is the
overpotential, b represents the Tafel slope, and j refers to the current
density). The double-layer capacitance (Cdl) was determined by cyclic
voltammetry in the voltage ranged between –0.1 and 0.1 V vs. RHE and
the i–t curves were measured at a constant potential of 0.3 V (vs. RHE).
EIS was conducted by SP-150, Bio-Logic SAS.
[4]
[5]
[6]
Y. P. Liu, G. T. Yu, G. D. Li, Y. H. Sun, T. Asefa, W. Chen, X. X. Zou,
Angew. Chem. Int. Edit. 2015, 54, 10752-10757.
a) Y. Jiao, Y. Zheng, M. T. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015,
44, 2060-2086; b) J. Li, X. Gao, B. Liu, Q. L. Feng, X. B. Li, M. Y. Huang,
Z. F. Liu, J. Zhang, C. H. Tung, L. Z. Wu, J. Am. Chem. Soc. 2016, 138,
3954-3957.
[7]
J. Staszak-Jirkovsky, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S.
Kota, K. C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G.
Kanatzidis, N. M. Markovic, Nature Mater. 2016, 15, 197-203.
K. G. Qu, Y. Zheng, X. X. Zhang, K. Davey, S. Dai, S. Z. Qiao, Acs Nano
2017, 11, 7293-7300.
[8]
[9]
a) R. M. Bullock, Science 2013, 342, 1054-1055; b) J. Greeley, T. F.
Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Nature Mater.
2006, 5, 909-913; c) Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew.
Chem. Int. Edit. 2015, 54, 52-65; d) R. Subbaraman, D. Tripkovic, D.
Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N.
M. Markovic, Science 2011, 334, 1256-1260; e) M.-R. Gao, J.-X. Liang,
Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nature Commun.
2015, 6, 5982; f) Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B.
Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, 146.
[10] a) Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E.
Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, S. L.
Suib, Adv. Energy Mater. 2016, 6, 1600528; b) J. Zhang, T. Wang, D.
Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem.
Int. Edit. 2016, 55, 6702-6707; c) H. Zhu, J. Zhang, R. Yanzhang, M. Du,
Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, Adv.
Mater. 2015, 27, 4752-4759; d) L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li,
Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am. Chem. Soc. 2015, 137, 14023-
14026; e) C. G. Morales-Guio, L.-A. Stern, X. Hu, Chem. Soc. Rev. 2014,
43, 6555-6569.
Acknowledgements ((optional))
[11] a) C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S.
Catanorchi, M. Comotti, Angew. Chem. Int. Edit. 2014, 53, 1378-1381;
b) V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A.
Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nature Mater. 2007, 6, 241-
247; c) R. van Lent, S. V. Auras, K. Cao, A. J. Walsh, M. A. Gleeson, L.
B. F. Juurlink, Science 2019, 363, 155-157.
This work was financially supported by the National Natural
Science Foundation of China (Nos. 21872020, 81872835,
81501556 and 21621003), the Ministry of Science and
Technology (Nos.2017YFC0906902 and 2017ZX09301032),
Macau Science and Technology Development Fund
(129/2017/A3 and 089/2013/A3). The China Scholarship Council
(No. 201806085012) is also acknowledged.
[12] a) R. W. Atkinson, III, R. R. Unocic, K. A. Unocic, G. M. Veith, T. A.
Zawodzinski, Jr., A. B. Papandrew, ACS Appl. Mater. Interfaces 2015, 7,
10115-10124; b) X. X. Zou, X. X. Huang, A. Goswami, R. Silva, B. R.
Sathe, E. Mikmekova, T. Asefa, Angew. Chem. Int. Edit. 2014, 53, 4372-
4376.
[13] a) P. Verma, K. Yuan, Y. Kuwahara, K. Mori, H. Yamashita, Appl. Catal.
B-Environ. 2018, 223, 10-15; b) M. Sankar, N. Dimitratos, P. J. Miedziak,
P. P. Wells, C. J. Kiely, G. J. Hutchings, Chem. Soc. Rev. 2012, 41, 8099-
8139.
DECLARATION OF INTERESTS
The authors declare no competing interests.
[14] a) R. Parimaladevi, V. P. Parvathi, S. S. Lakshmi, M. Umadevi, Mater.
Lett. 2018, 211, 82-86; b) Y. Wang, Y. Qin, X. Zhang, X. Dai, H. Zhuo, C.
Luan, Y. Jiang, H. Zhao, H. Wang, X. Huang, Dalton Trans. 2018, 47,
7975-7982.
Keywords: Ultra-fine bimetallic PtNi nanoparticles • Ultra-low Pt
content • Excellent HER and hydrogenation performance •
Facile and large-scale fabrication
[15] a) X. Song, Q. Shi, H. Wang, S. Liu, C. Tai, Z. Bian, Appl. Catal. B-
Environ. 2017, 203, 442-451; b) Y. Cheng, S. Lu, F. Liao, L. Liu, Y. Li, M.
This article is protected by copyright. All rights reserved.