pubs.acs.org/joc
C-N cross-coupling reactions are considered to be impor-
Recyclable Heterogeneous Iron Catalyst for C-N
Cross-Coupling under Ligand-Free Conditions
tant in the synthesis of optical devices, pharmaceuticals, and
materials.1 Several metal salts such as Pd,2 Cu,3 Ni,4 Cd,5 etc.
have been reported for the catalysis of N-arylation. Of
recent, iron-catalyzed C-N bond formation developed by
Liu,6a Bolm,6b-d and Taillefer6e involving different ligands
and cocatalysts has attracted considerable attention of che-
mists due to their inexpensive, nontoxic, and environmen-
tally friendly properties. Though these results are highly
encouraging, we felt that there is still scope to further
improve these catalytic systems by making them ligand-free
with a recyclable catalyst for an efficient access to these
highly useful organic compounds.
K. Swapna, A. Vijay Kumar, V. Prakash Reddy, and
K. Rama Rao*
Organic Chemistry Division-I, Indian Institute of Chemical
Technology, Uppal Road, Tarnaka, Hyderabad 500607, India
Received May 25, 2009
Herein, we report a highly efficient, reusable graphite-
supported iron(III) acetyl acetonate catalytic system for the
C-N cross-coupling of aryl halides with amines in the
absence of any external ligand. Though many metals dis-
persed on graphite, viz. M-graphite (M = K, Zn, Sn, Fe, Ti,
Pd),7 were reported, the very tedious preparation of these
systems limits their use as catalysts. We have developed a
protocol in which FeIII(acac)3 was dispersed on graphite by
simple procedure. The amount of iron8 was found to be 4.3%
on graphite by ICP-AES analysis. Initially, the reaction
between phenyl iodide (1) and 1H-pyrazole (2) in the pre-
sence of Fe/Cg catalyst was tested as a model reaction of
C-N cross-coupling (Scheme 1).
An efficient and ligand-free C-N cross-coupling of aryl
halides with various heterocycles using Fe/Cg as a recycl-
able catalyst is reported. The yields are excellent to
moderate.
SCHEME 1. Heterogeneous Fe/Cg-Catalyzed C-N Cross-
Coupling
Sustainable chemistry plays a vital role in chemical in-
dustries. As a part of this preoccupation, the search for more
economic and eco-friendly synthetic methodologies is our
primary concern. Among them, transition-metal-catalyzed
The reaction was optimized using various reaction para-
meters such as temperature, solvent, base, catalyst loading,
etc. (Table 1). No product formation could be seen in the
temperature range of 60-80 °C (Table 1, entries 1 and 2),
while lower yield was observed at 100 °C (Table 1, entry 3).
The desired C-N product formation was observed (3a) in
95% yield when the substrates were stirred for 24 h at 120 °C
in the presence of 5 wt % Fe/Cg and KOH in dry DMSO
under nitrogen atmosphere (Table 1, entry 4). Among several
solvents tested, DMF, toluene, and dioxane were less effec-
tive compared to DMSO (Table 1, entries 5-7). DMSO was
(1) For general reviews, see: (a) Beletskaya, I. P.; Cheprakov, A. V.
Coord. Chem. Rev. 2004, 248, 2337–2364. (b) Beccalli, E. M.; Broggini, G.;
Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318–5365. (c)
Corbert, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651–2710. (d) Ley, S.
V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449.
(2) For representative papers on palladium-catalyzed C-N cross-cou-
pling reactions, see: (a) Parrish, C. A.; Buchwald, S. L. J. Org. Chem. 2001,
66, 3820–3827. (b) Urgaonkar, S.; Nagarajan, M.; Verkade, J. G. J. Org.
Chem. 2003, 68, 452–459. (c) Tundel, R. E.; Anderson, K. W.; Buchwald, S.
L. J. Org. Chem. 2006, 71, 430–433. (d) Xie, X.; Zhang, T. Y.; Zhang, Z. J.
Org. Chem. 2006, 71, 6522–6529.
(3) For representative papers on copper-catalyzed C-N cross-coupling
reactions, see: (a) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett.
2002, 4, 581–584. (b) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am.
Chem. Soc. 2002, 124, 11684–11688. (c) Antilla, J. C.; Baskin, J. M.; Barder,
T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578–5587. (d) Liu, L.; Frohn,
M.; Xi, N.; Dominguez, C.; Hungate, R.; Reider, P. J. J. Org. Chem. 2005, 70,
10135–10138. (e) Kantam, M. L.; Venkanna, G. T.; Sridhar, C.; Sreedhar, B.;
Choudary, B. M. J. Org. Chem. 2006, 71, 9522–9524. (f) Correa, A.; Bolm, C.
Adv. Synth. Catal. 2007, 349, 2673–2676. (g) Zhu, R.; Xing, L.; Wang, X.;
Cheng, C.; Su, D.; Hu, Y. Adv. Synth. Catal. 2008, 350, 1253–1257. (h) Wang,
H.; Li, Y.; Sun, F.; Feng, Y.; Jin, K.; Wang, X. J. Org. Chem. 2008, 73, 8639–
8642. (i) Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Chem.;
Eur. J. 2004, 10, 5607–5622. (j) Xia, N.; Taillefer, M. Angew. Chem., Int. Ed.
2008, 47, 1–4. (k) Chen, S.; Huang, H.; Liu, X.; Shen, J.; Jiang, H.; Liu, H. J.
Comb. Chem. 2008, 10, 358–360. (l) Cristau, H. J.; Cellier, P. P.; Spindler, J.
F.; Taillefer, M. Eur. J. Org. Chem. 2004, 695–709. (m) Taillefer, M.; Ouali,
A.; Renard, B.; Spindler, J. F. Chem.;Eur. J. 2006, 12, 5301–5313. (n)
Laxmidhar, R.; Saha, P.; Suribabu, J.; Punniyamurthy, T. Org. Lett. 2007, 9,
3397–3399. (o) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett.
2001, 3, 4315–4317. (p) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450–1460.
(q) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164–5173.
(4) (a) Butler, T. A.; Swift, E. C.; Lipshutz, B. H. Org. Biomol. Chem.
2008, 6, 19–25. (b) Lipshutz, B. H.; Frieman, B. A.; Butler, T.; Kogan, V.
Angew. Chem., Int. Ed. 2006, 45, 800–803.
(5) Laxmidhar, R.; Saha, P.; Suribabu, J.; Punniyamurthy, T. Adv. Synth.
Catal. 2008, 350, 395–398.
(6) (a) Guo, D.; Huang, H.; Xu, J.; Jiang, H.; Liu, H. Org. Lett. 2008, 10,
4513–4516. (b) Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2007, 46, 8862–
8865. (c) Correa, A.; Elmore, S.; Bolm, C. Chem.;Eur. J. 2008, 14, 3527–
3529. (d) Correa, A.; Bolm, C. Adv. Synth. Catal. 2008, 350, 391–394. (e)
Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem., Int. Ed. 2007, 46, 934–936.
(7) Savoia, D.; Trombini, C.; Ronchi, A. U. Pure Appl. Chem. 1985, 57,
1887–1896. and the references cited therein.
(8) (a) Plietker, B. Iron Catalysis in Organic Chemistry; Wiley-VCH:
Weinheim, Germany, 2008. (b) Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem.
Rev. 2004, 104, 6217–6254. (c) Bedford, R. B.; Bruce, D. W.; Frost, R. M.;
Goodby, J. W.; Hird, M. Chem. Commun. 2004, 2822–2823. (d) Bedford, R. B.;
Bruce, D. W.; Frost, R. M.; Hird, M. Chem. Commun. 2005, 4161–4163.
7514 J. Org. Chem. 2009, 74, 7514–7517
Published on Web 09/01/2009
DOI: 10.1021/jo901095c
r
2009 American Chemical Society