The Journal of Physical Chemistry A
Article
the results of this study indicate that OH radical regeneration
occurs in the OH + n-butanol reaction at low temperatures,
Butanol and 3-Methyl-2-Butanol Between 241 and 373 K. Phys. Chem.
Chem. Phys. 2004, 6, 2951−2955.
(
́
11) Teton, S.; Mellouki, A.; Le Bras, G.; Sidebottom, H. Rate
<
380 K, which indicates a generally higher level of reactivity of
Constants for Reactions of OH Radicals with a Series of Asymmetrical
n-butanol.
Ethers and tert-Butyl Alcohol. Int. J. Chem. Kinet. 1996, 28, 291−297.
(12) Wallington, T. J.; Dagaut, P.; Liu, R.; Kurylo, M. J. Gas-Phase
ASSOCIATED CONTENT
* Supporting Information
■
Reactions of Hydroxyl Radicals with the Fuel Additives Methyl and
tert-Butyl Ether and tert-Butyl Alcohol Over the Temperature Range
S
Infrared band strength data for the butanol isomers measured
in this work; graphical summaries of the site-specific branching
ratios for the OH + butanol reactions determined in this work.
2
(
40−440 K. Environ. Sci. Technol. 1988, 22, 842−844.
13) Droege, A. T.; Tully, F. P. Hydrogen-Atom Abstraction from
Alkanes by OH. 5. n-Butane. J. Phys. Chem. 1986, 90, 5937−5941.
(14) Greiner, N. R. Hydroxyl Radical Kinetics by Kinetic Spectros-
copy. VI. Reactions with Alkanes in the Range 300−500 K. J. Chem.
Phys. 1970, 53, 1070−1076.
(15) Tully, F. P.; Goldsmith, J. E. M.; Droege, A. T. Hydrogen-Atom
Abstraction from Alkanes by OH. 4. Isobutane. J. Phys. Chem. 1986,
AUTHOR INFORMATION
■
9
(
0, 5932−5937.
*
16) Tully, F. P.; Koszykowski, M. L.; Binkley, J. S. Hydrogen-Atom
Present Address
Abstraction from Alkanes by OH. I. Neopentane and Neooctane. 20th
Symp. (Int.) Combust./Combus. Inst. 1984, 715−721.
§
Department of Soil, Water, and Climate, University of
Minnesota, St. Paul, Minnesota 55108-6028, United States.
(17) Dunlop, J. R.; Tully, F. P. Catalytic Dehydration of Alcohols by
Notes
OH. 2-Propanol: An Intermediate Case. J. Phys. Chem. 1993, 97,
457−6464.
18) Tully, F. P. Catalytic Dehydration of Alcohols by OH.
H C) CCH OH: A Limiting Case. 23rd Symp. (Int.) Combust./
6
(
(
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported in part by NOAA’s Health of the
Atmosphere program.
3
3
2
■
Combust. Inst. 1990, 147−153.
(19) Carr, S. A.; Blitz, M. A.; Seakins, P. W. Site-Specific Rate
Coefficients for Reaction of OH with Ethanol from 298 to 900 K. J.
Phys. Chem. A 2011, 115, 3335−3345.
REFERENCES
■
(20) Papadimitriou, V. C.; Talukdar, R. K.; Portmann, R. W.;
Ravishankara, A. R.; Burkholder, J. B. CF CFCH and (Z)-
(
1) Derwent, R. G.; Jenkin, M. E.; Saunders, S. M. Photochemical
Ozone Creation Potentials for a Large Number of Reactive
3
2
CF CFCHF: Temperature Dependent OH Rate Coefficients and
3
Hydrocarbons Under European Conditions. Atmos. Environ. 1996,
Global Warming Potentials. Phys. Chem. Chem. Phys. 2008, 10, 808−
3
(
0, 181−199.
8
20.
2) Fortin, T. J.; Howard, B. J.; Parrish, D. D.; Goldan, P. D.; Kuster,
(21) Vaghjiani, G. L.; Ravishankara, A. R. Kinetics and Mechanism of
W. C.; Atlas, E. L.; Harley, R. A. Temporal Changes in U.S. Benzene
Emissions Inferred from Atmospheric Measurements. Environ. Sci.
Technol. 2005, 39, 1403−1408.
OH Reaction with CH OOH. J. Phys. Chem. 1989, 93, 1948−1959.
3
(22) Baasandorj, M.; Papanastasiou, D. K.; Talukdar, R. K.; Hasson,
A. S.; Burkholder, J. B. (CH ) COOH (tert-Butyl Hydroperoxide):
3
3
(
̈
3) Konig, G.; Brunda, M.; Puxbaum, H.; Hewitt, C. N.; Duckham, S.
OH Reaction Rate Coefficients Between 206 and 375 K and the OH
Photolysis Quantum Yield at 248 nm. Phys. Chem. Chem. Phys. 2010,
C.; Rudolph, J. Relative Contribution of Oxygenated Hydrocarbons to
the Total Biogenic VOC Emissions of Selected Mid-European
Agricultural and Natural Plant Species. Atmos. Environ. 1995, 29,
1
(
2, 12101−12111.
23) Sander, S. P.; et al. Chemical Kinetics and Photochemical Data
8
(
61−874.
for Use in Atmospheric Studies, Evaluation Number 17, JPL
4) Goldan, P. D.; Kuster, W. C.; Fehsenfeld, F. C.; Montzka, S. A.
The Observation of a C Alcohol Emission in a North-American Pine
5
Forest. Geophys. Res. Lett. 1993, 20, 1039−1042.
(24) Veres, P.; Gilman, J. B.; Roberts, J. M.; Kuster, W. C.; Warneke,
(
5) Kelly, T. J.; Callahan, P. J.; Plell, J.; Evans, G. F. Method
C.; Burling, I. R.; de Gouw, J. Development and Validation of a
Portable Gas Phase Standard Generation and Calibration System for
Volatile Organic Compounds. Atmos. Meas. Technol. 2010, 3, 683−
Development and Field-Measurements for Polar Volatile Organic
Compounds In Ambient Air. Environ. Sci. Technol. 1993, 27, 1146−
1153.
6
(
91.
26) Wu, H.; Mu, Y. J.; Zhang, X. S.; Jiang, G. B. Relative Rate
(
6) Pankow, J. F.; Luo, W. T.; Bender, D. A.; Isabelle, L. M.;
Hollingsworth, J. S.; Chen, C.; Asher, W. E.; Zogorski, J. S.
Concentrations and Co-Occurrence Correlations of 88 Volatile
Organic Compounds (VOCs) in the Ambient Air of 13 Semi-Rural
to Urban Locations in the United States. Atmos. Environ. 2003, 37,
(
Constants for the Reactions of Hydroxyl Radicals and Chlorine Atoms
with a Series of Aliphatic Alcohols. Int. J. Chem. Kinet. 2003, 35, 81−
5
(
023−5046.
8
7.
7) Levasseur, A.; Lesage, P.; Margni, M.; Deschenes, L.; Samson, R.
(27) Saunders, S. M.; Baulch, D. L.; Cooke, K. M.; Pilling, M. J.;
Considering Time in LCA: Dynamic LCA and Its Application to
Global Warming Impact Assessments. Environ. Sci. Technol. 2010, 44,
Smurthwaite, P. I. Kinetics and Mechanisms of the Reactions of OH
with Some Oxygenated Compounds of Importance in Tropospheric
Chemistry. Int. J. Chem. Kinet. 1994, 26, 113−130.
3
(
169−3174.
8) Yujing, M.; Mellouki, A. Temperature Dependence for the Rate
(28) Moss, J. T.; Berkowitz, A. M.; Oehlschlaeger, M. A.; Biet, J.;
Constants of the Reaction of OH Radicals with Selected Alcohols.
Warth, V.; Glaude, P.-A.; Battin-Leclerc, F. An Experimental and
Kinetic Modeling Study of the Oxidation of the Four Isomers of
Butanol. J. Phys. Chem. A 2008, 112, 10843−10855.
Chem. Phys. Lett. 2001, 333, 63−68.
(
́ ́
9) Jimenez, E.; Lanza, B.; Garzon, A.; Ballesteros, B.; Albaladejo, J.
Atmospheric Degradation of 2-Butanol, 2-Methyl-2-Butanol, and 2,3-
Dimethyl-2-Butanol: OH Kinetics and UV Absorption Cross Sections.
J. Phys. Chem. A 2005, 109, 10903−10909.
(29) Sarathy, S. M.; Vranckx, S.; Yasunaga, K.; Mehl, M.; Oßwald, P.;
̈
Westbrook, C. K.; Pitz, W. J.; Kohse-Hoinghaus, K.; Fernandes, R. X.;
Curran, H. J. A Comprehensive Chemical Kinetic Combustion Model
(
10) Mellouki, A.; Oussar, F.; Lun, X.; Chakir, A. Kinetics of the
Reactions of the OH Radical with 2-Methyl-1-Propanol, 3-Methyl-1-
for the Four Butanol Isomers. Combust. Flame 2012, 159, 2028−2055.
T
dx.doi.org/10.1021/jp402702u | J. Phys. Chem. A XXXX, XXX, XXX−XXX