140
X.-X. Wang et al. / Applied Catalysis A: General 388 (2010) 134–140
when the NaCl content is 1% in the catalyst (Table 3).
addition of NaCl decreases the strength of the Lewis acid sites; such
lower strength is believed to be the main factor for the enhanced
activity. With a low NaCl content (≤1%), the increase in the elec-
tron density on Pt leads to the increase of the selectivity to crotyl
alcohol; however with a high NaCl content (>1%), the growth of Pt
particle size and the weakened strength of Lewis acid lead to the
decrease of the selectivity.
In order to explain the enhancement of selectivity on the NaCl-
account [30]. When the NaCl content is below 1%, the Pt particle
size does not change much (about 3 nm, Table 1), so the Pt particle
size is not considered to be the major factor that affects the selec-
tivity to crotyl alcohol. The DRIFTS results of CO adsorption (Fig. 4)
and XPS results (Fig. 5) clearly show that with the increasing of
NaCl contents, the electron density of Pt increases; such higher
density can easily attract the electron positive carbonyl carbon.
The strong interaction of the electronegative Pt particles with elec-
tropositive carbonyl carbon could certainly improve the selectivity
to the crotyl alcohol; such improvement probably plays a key role
as it compensates the opposite effect of the weak acidic strength of
the NaCl-containing catalysts on the decline of selectivity.
Acknowledgments
The authors acknowledge Prof. Shishan Sheng from the Dalian
Institute of Chemical Physics for his help on conducting the in situ
XPS experiments. Dr. Xiang Wang is thanked for his help with pol-
ishing the latest version of our manuscript.
References
When the NaCl content is higher than 1% in the catalyst, the par-
ticle size of Pt changes significantly and grows from 3.7 to 6.0 nm.
cles are favorable for the formation of crotyl alcohol [31], however,
the selectivity declines with the increase of Pt particles (Table 3)
in the present work. According to the crotonaldehyde adsorption
model (Scheme 1), the formation of crotyl alcohol takes place on
the interface region, which involves both Pt and Lewis acid sites.
The growth of Pt particle results in a decline in the amount of inter-
facial sites of Pt contacting with Lewis acid sites, while the sites
for the C C bond adsorption increase. Therefore, the competing
adsorption of C C bond on large Pt particles suppresses the selec-
tivity to crotyl alcohol. Moreover, the weakened Lewis acidity on
[1] H. Surburg, J. Panten, Common Fragrance and Flavour Materials: Preparation
Properties and Uses, 5th ed., Wiley-VCH, New York, 2006, pp. 27–49.
[2] P. Gallezot, D. Richard, Catal. Rev. Sci. Eng. 40 (1998) 81–126.
[3] A. Corma, L.T. Nemeth, M. Renz, S. Valencia, Nature 412 (2001) 423–425.
[4] A.L.
5454–5459.
[5] J. Jenck, J.E. Germain, J. Catal. 65 (1980) 133–140.
Gemal,
J.L.
Luche,
J.
Am.
Chem.
Soc.
103
(1981)
[6] A. Giroir-Fendler, D. Richard, P. Gallezot, Stud. Surf. Sci. Catal. 41 (1988)
171–178.
[7] P. Beccat, J.C. Bertolini, Y. Gauthier, J. Massardier, P. Ruiz, J. Catal. 126 (1990)
451–456.
[8] D.I. Jerdev, A. Olivas, B.E. Koel, J. Catal. 205 (2002) 278–288.
[9] J. Silvestre-Albero, F. Rodriguez-Reinoso, A. Sepulveda-Escribano, J. Catal. 210
(2002) 127–136.
[10] F. Ammari, J. Lamotte, R. Touroude, J. Catal. 221 (2004) 32–42.
[11] B.A. Riguetto, C.E.C. Rodrigues, M.A. Morales, E. Baggio-Saitovitch, L. Gengem-
bre, E. Payen, C.M.P. Marques, J.M.C. Bueno, Appl. Catal. A: Gen. 318 (2007)
70–78.
[12] M. Abid, V. Paul-Boncour, R. Touroude, Appl. Catal. A: Gen. 297 (2006) 48–59.
[13] A.J. Plomp, H. Vuori, A.O.I. Krause, K.P. de Jong, J.H. Bitter, Appl. Catal. A: Gen.
351 (2008) 9–15.
[14] M. Englisch, A. Jentys, J.A. Lercher, J. Catal. 166 (1997) 25–35.
[15] L. Jankovicˇ, P. Komadel, J. Catal. 218 (2003) 227–233.
[16] G.V. Shanbhag, T. Joseph, S.B. Halligudi, J. Catal. 250 (2007) 274–282.
[17] Y.Q. Huang, A.Q. Wang, L. Li, X.D. Wang, D.S. Su, T. Zhang, J. Catal. 255 (2008)
144.
[18] A. Bourane, O. Dulaurent, D. Bianchi, J. Catal. 196 (2000) 115–125.
[19] T. Rades, V.Y. Borovkov, V.B. Kazansky, M. Polisset-Thfoin, J. Fraissard, J. Phys.
Chem. 100 (1996) 16238–16241.
[20] P. Panagiotopoulou, D.I. Kondarides, J. Catal. 260 (2008) 141–149.
[21] A. Huidobro, A. Sepulveda-Escribano, F. Rodriguez-Reinoso, J. Catal. 212 (2002)
94–103.
the high NaCl content catalyst may suppress the adsorption of C
O
bond, which would result in the lowered selectivity to crotyl alco-
hol. This is consistent with the reaction results (Table 3), as the
selectivity to butanal increases when the NaCl content is higher
than 1%, accompanied by the loss of selectivity to crotyl alcohol.
In summary, the selectivity to the desired product crotyl alcohol
is influenced by several factors: the strength of Lewis acid sites, the
electronegativity of Pt species and the Pt particle size. The weak
strength of Lewis acid sites will suppress the selectivity, while
highly electronegative Pt species are beneficial to the enhance-
ment of the selectivity. Moreover, when the Pt particles grow larger,
the interfacial sites for C O adsorption decline while the adsorp-
tion of C C bond becomes more pronounced, thus suppressing the
selectivity to crotyl alcohol.
[22] S¸ . Özkara-Aydınog˘lu, E. Özensoy, A.E. Aksoylu, Int. J. Hydrogen Energy 34 (2009)
9711–9722.
[23] E.V. Ramos-Fernández, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Catal.
Commun. 9 (2008) 1243–1246.
[24] L.V. Mattos, F.B. Noronha, J. Catal. 233 (2005) 453–463.
[25] A. Yee, S.J. Morrison, H. Idriss, J. Catal. 186 (1999) 279–295.
[26] J. Raskó, J. Kiss, Appl. Catal. A: Gen. 287 (2005) 252–260.
[27] J. Raskó, T. Kecskés, J. Kiss, Appl. Catal. A: Gen. 287 (2005) 244–251.
[28] V.N. Kalevaru, A. Benhmid, J. Radnik, M.M. Pohl, U. Bentrup, A. Martin, J. Catal.
246 (2007) 399–412.
[29] F. Ammari, C. Milone, R. Touroude, J. Catal. 235 (2005) 1–9.
[30] Q.Y. Yang, Y. Zhu, L. Tian, S.H. Xie, Y. Pei, H. Li, H.X. Li, Mi.H. Qiao, K.N. Fan, Appl.
Catal. A: Gen. 369 (2009) 67–76.
4. Conclusions
In this work, we demonstrated that the selective hydrogena-
tion of crotonaldehyde can be enhanced by the modification of
the Pt/ZrO2 catalyst. By adding NaCl to Pt/ZrO2 catalysts, one can
remarkably enhance the reactivity of the catalyst and the selec-
tivity to crotyl alcohol. The characterization results show that the
[31] M.E. Grass, R.M. Rioux, G.A. Somorjai, Catal. Lett. 128 (2009) 1–8.