7394
B. K. Banik et al. / Tetrahedron Letters 48 (2007) 7392–7394
papers.10,11 As a result of our long-term involvement in
the use of imine in organic synthesis, we became inter-
ested to identify the formation of the acylimine interme-
McCarthy, J. P.; Zhang, R.; Moreland, S. J. Med. Chem.
993, 36, 119.
. Snider, B. B.; Shi, Z. J. Org. Chem. 1993, 58, 3828.
4. Evans, P. A.; Manangan, T. Tetrahedron Lett. 2005, 46,
811, and references cited therein.
1
3
1
2
diate. Reaction of urea 2 with benzaldehyde 1a was
performed in the presence and absence of bismuth ni-
trate for 2–16 h under reflux temperature in benzene
using a Dean Stark. However, formation of acylimine
8
5
. (a) Biginelli, P. Gazz Chim. Ital. 1893, 360; For a review of
the Biginelli reaction see: (b) Kappe, C. O. Tetrahedron
1
993, 34, 6937.
1
0,11
could not be detected.
The staring materials (urea
6
. (a) Singh, K.; Arora, D.; Singh, S. Tetrahedron Lett. 2006,
47, 4205; (b) Kappe, C. O.; Stadler, A. Org. React. 2004,
63, 1.
and benzaldehyde) remain unreacted as evidenced from
1
H NMR study. On this basis, it seems that the mecha-
nism of Biginelli reaction is complex and further work is
necessary to determine the course of the reaction.
7. Ranu, B. C.; Hazra, A.; Jana, U. J. Org. Chem. 2000, 65,
270, and references cited therein.
6
8
. (a) Bose, A.; Sanjoto, P.; Aguilar, H.; Banik, B. K.
Tetrahedron Lett. 2007, 48, 3945; (b) Banik, B. K.; Garcia,
I.; Morales, F. Heterocycles 2007, 71, 919; (c) Banik, B.
K.; Cardona, M. Tetrahedron Lett. 2006, 47, 7385; (d)
Banik, B. K.; Banik, I.; Renteria, M.; Dasgupta, S. Tetra-
hedron Lett. 2005, 46, 2643; (e) Banik, B. K.; Samajdar, S.;
Banik, I. J. Org. Chem. 2004, 69, 213; (f) Banik, B. K.;
Alder, D.; Nguyen, P.; Srivastava, N. Heterocycles 2003,
61, 97, and references cited therein.
In conclusion we have demonstrated a new, mild, cost
effective, catalytic, and highly efficient procedure for
the synthesis of 4-aryl-3,4-dihydropyrimidones.13 In
contrast, most the available procedures require much
longer reaction times, expensive and/or corrosive acids
(
catalytic or stoichiometric), dry reaction conditions,
and dry solvents.
9
. For microwave-induced organic synthesis, see: Banik,
B. K.; Barakat, K. J.; Wagle, D. R.; Manhas, M. S.; Bose,
A. K. J. Org. Chem. 1999, 64, 5746.
Acknowledgment
1
0. Ramalinga, K.; Vijayalashmi, P.; Kaimal, T. N. B. Synlett
001, 863.
2
We gratefully acknowledge the financial support for this
research project from National Institutes of Health-
SCORE (2SO6GM008038-36).
11. Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55,
3784.
1
2. For the use of imine, see: (a) Banik, B. K.; Banik, I.;
Becker, F. F. Bioorg. Med. Chem. 2005, 13, 3611; (b)
Banik, I.; Becker, F. F.; Banik, B. K. J. Med. Chem. 2003,
4
6, 12.
References and notes
13. A representative experimental procedure is described
below: Microwave synthesis of 4-aryl-3,4-dihydropyr-
imidones: Aromatic aldehyde (1 mmol), b-ketoester
(1.1 mmol), and urea (1.1 mmol) were mixed with bismuth
nitrate (10 mg) and placed in a microwave reaction vial.
The CEM Discover Lab-Mate microwave was programed
to the following settings: 300 W, 100 °C, and reaction time
of 4.5 min. After the reaction, ice water was added, which
resulted in the precipitation of the solid product. This was
crystallized (ether–hexane) to afford the pure product as
1
. (a) Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashi-
matsu, M.; Ohnaka, Y.; Takeuchi, Y.; Hamaguchi, M.;
Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.; Ishihara,
T.; Funahashi, K.; Sato, F.; Morita, M.; Noguchi, T. J.
Med. Chem. 1989, 32, 2399; (b) Hu, E. H.; Sidler, D. R.;
Dolling, U. H. J. Org. Chem. 1998, 68, 3454; (c) Kappe, C.
O. Eur. J. Med. Chem. 2000, 35, 1043; (d) Rovnyak, G. C.;
Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.;
Schwartz, J.; Malley, M. F. J. Med. Chem. 1992, 35, 3254.
. Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.;
DiMarco, J. D.; Gougoutas, J.; Hedberg, A.; Malley, M.;
1
4
described earlier.
14. Mukhopadhyay, C.; Dutta, A.; Banik, B. K. Heterocycles
2007, 71, 81.
2