LETTER
Polymer-Supported Acid Catalyzed Hetero-Michael Addition
1071
®
Table 1 Nafion SAC-13 Catalyzed Hetero-Michael Addition of
Nitrogen, Oxygen and Sulfur Nucleophiles to a,b-Unsaturated Ke-
tones
These examples demonstrate that the convenient synthe-
sis of benzyloxycarbonyl or benzyl protected amino, oxy
and thio functionalities can be achieved by the use of a
single solid catalyst. Byproducts arising from acid-medi-
ated breakdown reactions of the reactants or products
were not observed in the presence of polymer-supported
acids, once more underlining the great potential of this
method.
R1
R2
R3
Entry
RXH
Time/h Yield
%)
(
1
2
3
4
5
6
7
8
9
Me
Et
H
H
Cbz-NH2
12
12
12
12
24
12
12
12
72
72
1
83
65
93
78
99
48
62
98
67
33
81
98
95
30
H
H
Cbz-NH2
In summary, the first general method for hetero-Michael
reactions of nitrogen, oxygen and sulfur nucleophiles us-
ing a highly active polymer-supported acid catalyst,
Et
Me
Me
Et
H
Cbz-NH2
Cbz-NH2
Cbz-NH2
Cbz-NH2
Cbz-NH2
Ph-NH2
Bn-OH
Me
Ph
H
®
Nafion SAC-13, has been developed. Efficient catalyst
H
regeneration and simple workup are advantages of this
procedure. Further studies will focus on the development
of resin-bound Brønsted superacids17 in order to exceed
current levels of catalyst activity and on the extension of
the reaction scope.
Me
Me
Me
Me
Ph
i-Pr
Me
H
H
Me
H
H
H
Acknowledgment
1
1
1
1
1
0a
Et
H
MeOH
We thank Dr Christian Stark for helpful discussions. Financial
support (T. C. W.) by the Fonds der Chemischen Industrie, the
Studienstiftung des deutschen Volkes and St. John’s College,
Cambridge, is gratefully acknowledged.
1
Et
H
H
Bn-SH
2
Et
Me
Me
H
H
Bn-SH
1
3
Me
AcNH
Me
H
Bn-SH
3
References
4
Cbz-NH2
72
(
1) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.;
Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.;
Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1
2000, 3815.
1
5b
AcNH
H
H
Cbz-NH2
12
81
a
MeOH as solvent.
b
®
(2) Recent examples: (a) Nagayama, S.; Kobayashi, S. Angew.
Chem. Int. Ed. 2000, 39, 567. (b) Kobayashi, S.; Nagayama,
S. Synlett 1997, 653. (c) Kobayashi, S.; Nagayama, S. J.
Am. Chem. Soc. 1998, 120, 2985.
205 mg (10 mol%) Nafion SAC-13 were used (see text).
or acids,7,13 catalyst loadings of 10% (based on acid
groups present) were examined and unprecedented levels
of activity were observed (entry 15), exceeding those
(
3) Villemin, D.; Martin, B. J. Chem. Res. 1994, 146.
(4) Sercheli R., Ferreira A. L. B., Guerreiro M. C., Vargas R.
M., Sheldon R. A., Schuchardt U.; Tetrahedron Lett.; 1997,
1
4
38: 1325.
attained with homogeneous catalysts.
(
(
5) Recent developments: (a) Choudary, B. M.; Kantam, M. L.;
Reddy, C. R. V.; Rao, K. K.; Figueras, F. J. Mol. Cat. A
1999, 146, 279. (b) Zahouily, M.; Abrouki, Y.; Rayadh, A.;
Sebti, S.; Dhimane, H.; David, M. Tetrahedron Lett. 2003,
Apart from reactivity, reusability is also a crucial issue
with polymer-supported catalysts. Investigations carried
out on the addition of benzyl carbamate to 4-hexen-3-one
revealed a sharp drop in activity when the resin was re-
used directly (Scheme 2). However, the catalyst could be
regenerated easily with aqueous acid and only a minor
loss of reactivity was observed when the reaction was
44, 2463.
6) (a) Pelletier, S. W.; Venkov, A. P.; Finer-Moore, J.; Mody,
N. Tetrahedron Lett. 1980, 21, 809. (b) Cornelis, A.;
Laszlo, P. Synlett 1994, 155. (c) Shaikh, N. S.; Deshpande,
V. H.; Bedekar, A. V. Tetrahedron 2001, 57, 9045.
1
5,16
carried out ten times with the same catalyst.
(
3
d) Sundararajan, G.; Prabagaran, N. Org. Lett. 2001, 3,
89. (e) Bartoli, G.; Bosco, M.; Marcantoni, E.; Petrini, M.;
Sambri, L.; Torregiani, E. J. Org. Chem. 2001, 66, 9052.
O
H NCbz
O
H NCbz
2
(
(
f) Lorette, N. B. J. Org. Chem. 1958, 23, 937.
g) Kabashima, H.; Katou, T.; Hattori, H. Appl. Cat. A 2001,
Nafion® SAC-13
214, 121.
initial yield: 93 %
(
(
7) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, in press.
8) (a) Olah, G. A.; Iyer, P. S.; Prakash, G. K. S. Synthesis 1986,
CH3CN, 12–16 h, r.t.
5
13. (b) Harmer, M. A.; Sun, Q. Appl. Cat. A 2001, 221, 45.
yield without regeneration: 42 %
(
9) (a) Török, B.; Kiricsi, I.; Molnar, A.; Olah, G. A. J. Cat.
2000, 193, 132. (b) Heidekum, A.; Harmer, M. A.;
Hoelderich, W. F. J. Cat. 1999, 181, 217.
yields after up to 9 successive regenerations: 85 % - 90 %
Scheme 2 Regeneration of Nafion SAC-13
Synlett 2003, No. 7, 1070–1072 ISSN 1234-567-89 © Thieme Stuttgart · New York