7
712 J. Phys. Chem. A, Vol. 113, No. 27, 2009
Letters
SCHEME 1: Proposed Reaction Mechanism for the
References and Notes
Formation of I (g) and IO(g) from the Interaction of
(g) with I (aq)
2
(
1) von Glasow, R.; Crutzen, P. J., Tropospheric Halogen Chemistry
-
O
3
in Treatise on Geochemistry ed. by Holland, H. D. Turekian, K. K. 2007.
(
(
(
2) Carpenter, L. J. Chem. ReV. 2003, 103, 4953–4962.
3) von Glasow, R. Nature 2008, 453, 1195–1196.
4) Saiz-Lopez, A.; Plane, J. M. C. Geophys. Res. Lett. 2004, 31,
L03111.
(
5) Wada, R.; Beames, J. M.; Orr-Ewing, A. J. J. Atmos. Chem. 2007,
5
8, 69–87.
(
6) Saiz-Lopez, A.; Mahajan, A. S.; Salmon, R. A.; Bauguitte, S. J. B.;
Jones, A. E.; Roscoe, H. K.; Plane, J. M. C. Science 2007, 317, 348–351.
7) Cainey, J. M.; Keywood, M.; Grose, M. R.; Krummel, P.; Galbally,
(
I. E.; Johnston, P.; Gillett, R. W.; Meyer, M.; Fraser, P.; Steele, P.; Harvey,
M.; Kreher, K.; Stein, T.; Ibrahim, O.; Ristovski, Z. D.; Johnson, G.;
Fletcher, C. A.; Bigg, E. K.; Gras, J. L. EnViron. Chem. 2007, 4, 143–150.
(
8) Read, K. A.; Mahajan, A. S.; Carpenter, L. J.; Evans, M. J.; Faria,
B. V. E.; Heard, D. E.; Hopkins, J. R.; Lee, J. D.; Moller, S. J.; Lewis,
A. C.; Mendes, L.; McQuaid, J. B.; Oetjen, H.; Saiz-Lopez, A.; Pilling,
M. J.; Plane, J. M. C. Nature 2008, 453, 1232–1235.
the detection region. Hence, the observed [IO(g)] at 2
mm above the aqueous surface may be significantly
reduced from the initial concentration.
(
9) Saiz-Lopez, A.; Plane, J. M. C.; McFiggans, G.; Williams, P. I.;
Ball, S. M.; Bitter, M.; Jones, R. L.; Hongwei, C.; Hoffmann, T. Atmos.
Chem. Phys. 2006, 6, 883–895.
(
10) Küpper, F. C.; Carpenter, L. J.; McFiggans, G. B.; Palmer, C. J.;
Atmospheric Implications
The present results for I
the work by Garland et al. demonstrating I
Waite, T. J.; Boneberg, E. M.; Woitsch, S.; Weiller, M.; Abela, R.;
Grolimund, D.; Potin, P.; Butler, A.; Luther, G. W.; Kroneck, P. M. H.;
Meyer-Klaucke, W.; Feiters, M. C. Proc. Natl. Acad. Sci. U.S.A. 2008, 105,
6954–6958.
(11) Dixneuf, S.; Ruth, A. A.; Vaughan, S.; Varma, R. M.; Orphal, J.
Atmos. Chem. Phys. 2009, 9, 823–829.
2
(g) production are consistent with
(g) formation from
both artificial and real seawater. It is apparent that interaction
2
2
2
-
of O
3
(g) with 0.1-0.4 µM I at the seawater surface is a possible
(
12) Peters, C.; Pechtl, S.; Stutz, J.; Hebestreit, K.; Honninger, G.;
source of reactive iodine compounds. Recent field and modeling
Heumann, K. G.; Schwarz, A.; Winterlik, J.; Platt, U. Atmos. Chem. Phys.
2005, 5, 3357–3375.
(13) Enami, S.; Yamanaka, T.; Hashimoto, S.; Kawasaki, M.; Tonokura,
K.; Tachikawa, H. Chem. Phys. Lett. 2007, 445, 152–156.
-
studies have revealed that I at the sea surface enhances O
3
(g)
(g)
uptake.2
3,24
Thus, a large discrepancy in the observed O
3
deposition velocities over the seawater from 0.01 to 0.12 cm
(14) Cotter, E. S. N.; Canosa-Mas, C. E.; Manners, C. R.; Wayne, R. P.;
-
1
-
s
could be explained by I , one of the most active components
Shallcross, D. E. Atmos. EnViron. 2003, 37, 1125–1133.
(15) Nakano, Y.; Ishiwata, T.; Kawasaki, M. J. Phys. Chem. A 2005,
109, 6527–6531.
23,24
in the seawater.
phase products during the rapid O
Here, we directly observe I
2
and IO as gas-
-
3
(g)-I (aq) interactions.
(
16) Enami, S.; Hashimoto, S.; Kawasaki, M.; Nakano, Y.; Ishiwata,
The present findings can be applied not only to the air/
seawater interface but also to the air/aerosol interface. It should
be emphasized that I- in fine sea salt aerosol particles is
significantly concentrated as compared to seawater by (2-4
T.; Tonokura, K.; Wallington, T. J. J. Phys. Chem. A 2005, 109, 1587–
1593.
(17) Gallagher, M. W.; Beswick, K. M.; Coe, H. Q. J. R. Meteorol.
Soc. 2001, 127, 539–558.
(
18) Lenschow, D. H.; Pearson, R.; Stankov, B. B. J. Geophys. Res.-
2
5-28
orders of magnitude).
In actual aerosols, HOI(aq) would
Oceans Atmos. 1982, 87, 8833–8837.
(19) Galbally, I. E.; Roy, C. R. Q. J. R. Meteorol. Soc. 1980, 106, 599–
620.
(20) Kawa, S. R.; Pearson, R. J. Geophys. Res. -Atoms. 1989, 94, 9809–
817.
2
9
-
29
competitively react with O
3
(g),
X
(X ) I, Br, Cl),
The reaction of HOI with
Br /Cl yields IBr/ICl, which could be emitted as IBr/ICl or
34
75-77
sulfur(IV), and organic species.
-
-
9
2 2
/Cl
after subsequent processing in the gas phase.2 At an
9
Br
iodine-enriched area such as Mace Head at the West sea of
(
21) Garland, J. A.; Elzerman, A. W.; Penkett, S. A. J. Geophys. Res.
1980, 85, 7488–7492.
(22) Garland, J. A.; Curtis, H. J. Geophys. Res. 1981, 86, 3183–3186.
1
2
Ireland and Lilia at the French Atlantic Coast of Brittany,
(
23) Chang, W. N.; Heikes, B. G.; Lee, M. H. Atmos. EnViron. 2004,
8, 1053–1059.
24) Oh, I. B.; Byun, D. W.; Kim, H. C.; Kim, S.; Cameron, B. Atmos.
-
strong I
initiated by I (aq) + O
be expected. The reported Henry’s law constants, H ) 3.0 for
2
(g) emissions from the reaction of HOI(aq) with I (aq)
3
-
3
(g) at the air/aerosol interface would
(
EnViron. 2008, 42, 4453–4466.
2
-1
72
(25) Duce, R. A.; Wasson, J. T.; Winchester, J. W.; Burns, E. J. Geophys.
Res. 1963, 68, 3943–3947.
I
2
, 2.4 × 10 for IBr, and 1.1 × 10 M atm for ICl imply
that a large fraction of I (g) emissions into the gas phase are
2
(
26) Seto, F. Y. B.; Duce, R. A. J. Geophys. Res. 1972, 77, 5339–5349.
more favorable than those of IBr(g)/ICl(g). Thus, whether sea
salt aerosols release photoactive inorganic halogen compounds
(27) Duce, R. A.; Winchest, Jw; Vannahl, T. W. J. Geophys. Res. 1965,
70, 1775–1799.
(
28) Martens, C. S.; Wesolows, J. J.; Harriss, R. C.; Kaifer, R. J.
Geophys. Res. 1973, 78, 8778–8792.
29) Enami, S.; Vecitis, C. D.; Cheng, J.; Hoffmann, M. R.; Colussi,
into the MBL or not is largely dependent on the actual
compositions.2 Here, we have shown that I
9
2
(g) emissions from
(
-
the O
<
3
(g) + I (aq) reaction are enhanced up to 7 times at pH
A. J. J. Phys. Chem. A 2007, 111, 8749–8752.
(30) Brown, M. A.; Ashby, P. D.; Ogletree, D. F.; Salmeron, M.;
Hemminger, J. C. J. Phys. Chem. C 2008, 112, 8110–8113.
4 over those at pH 5-10, and that non-negligible amounts of
IO(g) should be also emitted even at nighttime.
(
31) Brown, M. A.; Liu, Z.; Ashby, P. D.; Mehta, A.; Grimm, R. L.;
Hemminger, J. C. J. Phys. Chem. C 2008, 112, 18287–18290.
32) Brown, M. A.; Newberg, J. T.; Krisch, M. J.; Mun, B. S.;
Hemminger, J. C. J. Phys. Chem. C 2008, 112, 5520–5525.
33) Enami, S.; Vecitis, C. D.; Cheng, J.; Hoffmann, M. R.; Colussi,
A. J. J. Phys. Chem. A 2007, 111, 13032–13037.
34) Enami, S.; Vecitis, C. D.; Cheng, J.; Hoffmann, M. R.; Colussi,
Acknowledgment. The authors appreciate Ms. S. Hayase for
help with experiments. We greatly appreciate Dr. A. J. Colussi
of California Institute of Technology and Dr. Chad. D. Vecitis
of Yale University for valuable discussions. S.E. thanks the JSPS
Research Fellowships for Young Scientists. This work is partly
supported by a Grant-in-Aid from JSPS (#20245005).
(
(
(
A. J. Chem. Phys. Lett. 2008, 455, 316–320.
(35) Buch, V.; Milet, A.; Vacha, R.; Jungwirth, P.; Devlin, J. P. Proc.
Natl. Acad. Sci. U. S. A. 2007, 104, 7342–7347.
(
36) Davidovits, P.; Kolb, C. E.; Williams, L. R.; Jayne, J. T.; Worsnop,
D. R. Chem. ReV. 2006, 106, 1323–1354.
37) Enami, S.; Hoffmann, M. R.; Colussi, A. J. Proc. Acad. Natl. Sci.
U.S.A. 2008, 105, 7365–7369.
Supporting Information Available: Experimental details.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(