1548 J. Am. Chem. Soc., Vol. 123, No. 8, 2001
Rodr ´ı guez et al.
with exquisite stereochemical control.6,7 Whether these methods
will be useful for larger R-substituents is not clear, however. A
third chemical routesalkylation of the dianion derived from a
chiral â-hydroxy alcoholsprovides the anti-diastereomers for
a wide variety of substrates.8
diminishes the optical purities of the products when whole cells
of the organism are used as the biocatalytic reagent.2
2,23
A
variety of techniques have been developed to overcome these
selectivity problems (vide infra).
The use of purified yeast enzymes for carbonyl reductions
avoids problems associated with competing catalysts with
differing stereoselectivities. A variety of reductase enzymes have
Given the success of “chemical” routes to chiral â-hydroxy
esters, what can biocatalysis offer? Kinetic resolutions of
acylated â-hydroxy esters by lipases and enzymatic reductions
of â-keto esters are the major biocatalytic routes to these
compounds. While lipase-mediated hydrolyses are simple to
perform, the overall conversions require multiple steps (â-keto
ester reduction to form the racemic alcohol, acylation, and then
enzymatic deacylation and separation of the desired product)
24
been purified from baker’s yeast. Unfortunately, yeast alcohol
dehydrogenase, the sole commercially available enzyme, accepts
2
5
only a limited range of ketones as substrates. Moreover,
reductase enzymes also require reduced nicotinamide cofactors,
which must be provided in stoichiometric amounts or via a
regeneration system. These experimental complications have
inspired the search for methods to improve the stereoselectivities
of carbonyl reductions using intact yeast cells since they provide
a source of both the enzyme and cofactor in a simple-to-use
package. The key to improving the stereoselectivities of whole
cell-mediated reductions is to arrange conditions so that only
few yeast enzymes reduce the added carbonyl substrate.
9
,10
and a 50% yield is the maximum that can be obtained.
Enantioselective reductions, on the other hand, allow all of the
starting material to be converted to the desired product. While
a variety of biocatalytic reducing agents are available, baker’s
yeast (Saccharomyces cereVisiae) has been particularly valu-
able.1
1-16
A subset of the approximately 6000 proteins produced
2
6,27
by this organism catalyzes the reductions of ketones and
aldehydes, often with very high efficiencies and stereoselec-
Techniques have included modifying the substrate structure,
15,26,28
carefully controlling the substrate concentration,
changing
the use of organic solvents or two
and the inclusion of enzyme inhibitors
1
7
29,30
tivities. Such reactions have been carried out successfully for
many years on preparatively useful scales. For example, Neuberg
and Nord showed in 1914 that a growing yeast culture reduced
n-pentanal to the corresponding alcohol in 68% yield on a >20
g scale.18 Neuberg also provided the first demonstration that
yeast reduction of a prochiral ketone could yield an optically
active alcohol.19 Since that time, chiral ketone reductions have
been the most common application of baker’s yeast in organic
synthesis. These reductions are simple to perform, the cells are
inexpensive and readily available, and the technique is applicable
to a very broad array of carbonyl compounds. In addition, yeast
reductions help minimize the environmental impact of organic
synthesis: reductions are generally carried out in aqueous
solutions, and the spent catalyst is entirely biodegradable. These
advantages have led to the use of yeast reductions on industrial
the growth conditions,
phase systems,
1
5,31-36
3
7-42
in the culture medium.
While these methodologies favor
one catalyst over competitors, they are based on empirical
findings, and it is difficult to predict a priori their effects.
We have followed a different path in improving the stereo-
selectivities of yeast-mediated carbonyl reductions, using yeast
genome sequence information to rationally design strains with
4
3
predictable stereoselectivities. This approach, outlined in
(
22) Shieh, W.-R.; Gopalin, A. S.; Sih, C. J. J. Am. Chem. Soc. 1985,
1
07, 2993-2994.
(23) Nakamura, K.; Kawai, Y.; Nakajima, N.; Ohno, A. J. Org. Chem.
991, 56, 4778-4783.
1
(24) Stewart, J. D.; Rodriguez, S.; Kayser, M. M. In Enzyme Technology
for Pharmaceutical and Biotechnological Applications; Kirst, H. A., Yeh,
W.-K.; Zmijewski, M. J., Eds.; Marcel Dekker: New York, in press.
(25) Sih, C. J.; Zhou, B.-N.; Gopalin, A. S.; Shieh, W.-R.; VanMiddles-
worth, F. Sel., Goal. Synth. Effic., Proc. Workshop Conf. Hoechst. 14th
2
0,21
scales.
When a single yeast enzyme dominates the reduction of a
particular carbonyl compound, the use of whole yeast cells can
provide the corresponding chiral alcohol in very high optical
purity. In other cases, however, multiple yeast reductase
enzymes with differing enantioselectivities are involved. This
1
983, 184, 251-261.
(26) Zhou, B.-N.; Gopalin, A. S.; VanMiddlesworth, F.; Shieh, W.-R.;
Sih, C. J. J. Am. Chem. Soc. 1983, 105, 5925-5926.
27) Nakamura, K.; Miyai, T.; Nozaki, K.; Ushio, K.; Oka, S.; Ohno,
A. Tetrahedron Lett. 1986, 3155-3156.
(
(
28) Wipf, B.; Kupfer, E.; Bertazzi, R.; Leuenberger, H. G. W. HelV.
Chim. Acta 1983, 66, 485-488.
(
6) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103,
127-2129.
7) Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock,
C. H. J. Org. Chem. 1991, 56, 2499-2506.
8) Fr a´ ter, G.; M u¨ ller, U.; G u¨ nther, W. Tetrahedron 1984, 40, 1269-
277.
(29) Ehrler, J.; Giovannini, F.; Lamatsch, B.; Seebach, D. Chimia 1986,
40, 172-173.
2
(
(30) Kometani, t.; Yoshii, H.; Kitatsuji, E.; Nishimura, H.; Matsuno, R.
J. Ferment. Bioeng. 1993, 76, 33-37.
(
(31) Nakamura, K.; Kondo, S.-i.; Kawai, Y.; Ohno, A. Tetrahedron Lett.
1991, 7075-7078.
1
5
5
(
9) Akita, H.; Matsukura, H.; Oishi, T. Tetrahedron Lett. 1986, 5241-
(32) Nakamura, K.; Kondo, S.-i.; Kawai, Y.; Ohno, A. Bull. Chem. Soc.
Jpn. 1993, 66, 2738-2743.
244.
(10) Itoh, T.; Kuroda, K.; Tomosada, M.; Takagi, Y. J. Org. Chem. 1991,
(33) Jayasinghe, L. Y.; Smallridge, A. J.; Trewhella, M. A. Tetrahedron
Lett. 1993, 3949-3950.
6, 797-804.
(
(
(
(
11) Neuberg, C. AdV. Carbohydr. Chem. 1949, 4, 75-117.
(34) North, M. Tetrahedron Lett. 1996, 1699-1702.
(35) Medson, C.; Smallridge, A. J.; Trewhella, M. A. Tetrahedron:
Asymmetry 1997, 8, 1049-1054.
12) Servi, S. Synthesis 1990, 1-25.
13) Csuk, R.; Glanzer, B. I. Chem. ReV. 1991, 91, 49.
14) Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzocchi, A. Chem.
(36) Cui, J.-N.; Teraoka, R.; Ema, T.; Sakai, T.; Utaka, M. Tetrahedron
Lett. 1997, 3021-3024.
ReV. 1992, 92, 1071-1140.
15) D’Arrigo, P.; Pedrocchi Fantoni, G.; Servi, S.; Strini, A. Tetrahe-
dron: Asymmetry 1997, 8, 2375-2379.
16) Stewart, J. D. Curr. Opin. Drug DiscoVery DeV. 1998, 1, 278-
89.
17) Goffeau, A.; Barrell, B. G.; Bussey, H.; Davis, R. W.; Dujon, B.;
(
(37) Nakamura, K.; Inoue, K.; Oshio, K.; Oka, S.; Ohno, A. Chem. Lett.
1987, 679-682.
(
(38) Guo, Z.-W.; Sih, C. J. J. Am. Chem. Soc. 1989, 111, 6836-6841.
(39) Nakamura, K.; Kawai, Y.; Oka, S.; Ohno, A. Bull. Chem. Soc. Jpn.
1989, 62, 875-879.
2
(
Feldmann, H.; Galibert, F.; Hoheisel, J. D.; Jacq, C.; Johnston, M.; Louis,
E. J.; Mewes, H. W.; Murakami, Y.; Philippsen, P.; Tettelin, H.; Oliver, S.
G. Science 1996, 274, 546-567.
(40) Nakamura, K.; Kawai, Y.; Miyai, T.; Ohno, A. Tetrahedron Lett.
1990, 3631-3632.
(41) Nakamura, K.; Kawai, Y.; Ohno, A. Tetrahedron Lett. 1990, 267-
(18) Neuberg, C.; F., N. F. Biochem. Z. 1914, 62, 482-488.
(19) Neuberg, C.; Lewite, A. Biochem. Z. 1918, 91, 257-266.
(20) Keppler, J. G. J. Am. Oil Chem. Soc. 1977, 54, 474-477.
(21) Crocq, V.; Masson, C.; Winter, J.; Richard, C.; Lemaitre, Q.; Lenay,
270.
(42) Kawai, Y.; Kondo, S.-i.; Tsujimoto, M.; Nakamura, K.; Ohno, A.
Bull. Chem. Soc. Jpn. 1994, 67, 2244-2247.
(43) Rodriguez, S.; Kayser, M. M.; Stewart, J. D. Org. Lett. 1999, 1,
1153-1155.
J.; Vivat, M.; Buendia, J.; Prat, D. Org. Process. Res. DeV. 1997, 1, 2-13.