2358
T.K. Olszewski et al. / Journal of Organometallic Chemistry 695 (2010) 2354e2358
with 92% yield and total E stereoselectivity. In the last step of the
synthesis, the alcohol function in the acid 15 was reduced to an
[7] (a) P. Coutrot, C. Grison, C. Bômont, Phosphorus, Sulfur, and Silicon 77 (1993)
95;
1
(b) P. Coutrot, C. Grison, C. Bômont, Tetrahedron Lett. 35 (1994) 8381e8384;
c) P. Coutrot, C. Grison, C. Bômont, J. Organomet. Chem. 586 (1999) 208e217;
aldehyde by means of NaBH
4
generating with 83% yield the desired
(
1
0-hydroxy-2(E)-decenoic acid 2 with conserved E geometry of the
(d) C. Grison, A. Thomas, F. Coutrot, P. Coutrot, Tetrahedron 59 (2003)
101e2123;
e) C. Grison, A. Thomas, F. Coutrot, P. Coutrot, J. Organomet. Chem. 689 (2003)
530e1539.
2
(
1
double bond. The overall yield of the entire reaction sequence,
starting from the commercially available 13 was 49%.
In conclusion, a novel and versatile approach to the prepara-
tion of two known pheromones from honeybees A. mellifera
namely, 9-oxo-2(E)-decenoic acid 1 from queen substance (47%,
overall yield starting form commercially available substrate) and
[8] G.Yu. Ishmuratov, A.F. Ismagilova, A.A. Sharipov, O.N. Gerasyuta,
R.Ya. Kharisov, N.M. Ishmuratova, G.A. Tolstikov, Pharm. Chem. J. 37 (2003)
309e313.
[9] G.F. Townsend, W.H. Brown, E.E. Felauer, B. Hazlett, Can. J. Biochem. Physiol.
39 (1961) 1765e1770.
[
[
10] M.S. Blum, A.F. Novak, S. Taber, Science 130 (1959) 452e453.
11] D. Vucevic, E. Melliou, S. Vasilijic, S. Gasic, P. Ivanovski, I. Chinou, M. Colic, Int.
Immunopharmacol 7 (2007) 1211e1220.
10-hydroxy-2(E)-decenoic acid 2 from royal jelly (49%, overall
yield starting form commercially available material) and total E
stereoselectivity of the double bond present in both final struc-
tures was presented. The key step of the synthesis was the
reaction between homoenolate anion equivalent derived from
enephosphoramide and halogenated derivatives possessing
a masked carbonyl function. The synthetic value of this strategy
is based on the nature of the conjugate enephosphoramide group
which is stable to bases but liberates the aldehydic group under
mild acidic conditions. The results illustrate the benefit and
interest of the enephosphoramide strategy for the construction of
natural products. The potential in total synthesis of other natural
compounds is currently being investigated in our laboratory and
the results will be reported in due course.
[12] T. Nagai, M. Sakaia, R. Inouec, H. Inouec, N. Suzukia, Food Chem. 75 (2001)
37e240.
13] N. Hattori, H. Nomoto, H. Fukumitsu, S. Mishama, S. Furukawa, Biomed. Res.
8 (2007) 261e266.
2
[
2
[14] (a) For a review see: G.Yu. Ishmuratov, R.Ya. Kharisov, N.M. Botsman,
N.M. Ismuratova, G.A. Tolstikov Chem. Nat. Compounds 38 (2002) 1e23 [more
recent examples include];
(b) R.Ya. Kharisov, O.V. Botsman, L.P. Botsman, N.M. Ishmuratova,
G.Yu. Ishmuratov, G.A. Tolstikov, Chem. Nat. Compounds 38 (2002) 145e148;
(c) G.Yu. Ishmuratov, M.P. Yakovleva, L.P. Botsman, N.M. Ishmuratova,
R.R. Muslukhov, G.V. Khambalova, G.A. Tolstikov, Chem. Nat. Comp. 39 (2003)
28e30;
(d) J. Villieras, M. Rambaud, M. Graff, Tetrahedron Lett. 26 (1985) 53e56;
(e) G.Yu. Ishmuratov, M.P. Yakovleva, K.A. Tambovtsev, Yu.V. Legostaeva,
L.V. Kravchenko, N.M. Ishmuratova, G.A. Tolstikov, Chem. Nat. Compounds 44
(
2008) 74e76.
15] J.F. Normant, A. Commerçon, M. Bourgain, J. Villieras, Tetrahedron Lett. 16
1975) 3833e3836.
[
(
Appendix. Supplementary material
[
[
16] J. Villieras, M. Rambaud, M. Graff, Synth. Comm. 15 (1985) 569e580.
17] C. Ghobril, C. Sabot, Ch. Mioskowski, R. Baati, Eur. J. Org. Chem. (2008)
4104e4108.
18] F. Douelle, A.S. Capes, M.F. Greaney, Org. Lett. 9 (2007) 1931e1934.
19] J.S. Dickschat, E. Hemke, S. Schultz, Chem. Biodiversity 2 (2005) 318e352.
20] K. Sisido, M. Kawanisi, K. Kondo, T. Morimoto, A. Saito, N. Hukue, J. Org. Chem.
27 (1962) 4073e4076.
Detailed experimental procedures, spectroscopic characteriza-
tion of all compounds and copies of the NMR spectra for compounds
[
[
[
8
, 6a, 6b, 4, 5, 7a,12,14,15,1, 2. This information can be found, in the
[
[
21] R. Chiron, J. Chem. Ecol. 8 (1982) 709e713.
22] S. Mukherjee, J. Woon Yang, S. Hoffmann, B. List, Chem. Rev. 107 (2007)
References
5471e5569.
[23] (a) P. Coutrot, C. Grison, S. Genève, C. Didierjean, A. Aubry, A. Vicherat,
[
[
1] A. Nickon, J.L. Lambert, J. Am. Chem. Soc. 84 (1962) 4604e4605.
2] V. Nair, S. Vellalath, B.P. Babu, Chem. Soc. Rev. 37 (2008) 2691e2698 [and the
references cited therein].
M. Marraud, Lett. Pept. Sci. 4 (1997) 415e422;
(b) C. Grison, P. Coutrot, S. Genève, C. Didierjean, M. Marraud, J. Org. Chem. 70
(2005) 10753e10764;
[3] D. Hoppe, Synthesis 1 (2009) 43e55 [and the references cited therein].
[4] D. Hoppe, Angew. Chem. Int. Ed. Engl. 23 (1984) 932e948.
[5] D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 107 (2007) 5606e5655.
[6] B.E. Maki, E.V. Patterson, Ch. J. Cramer, K.A. Scheidt, Org. Lett. 11 (2009)
(c) C. Grison, S. Genève, E. Halbin, P. Coutrot, Tetrahedron 57 (2001)
4903e4923.
[24] M. Egger, P. Pellett, K. Nickl, S. Geiger, S. Graetz, R. Seifert, J. Heilmann,
B. Konig, Chem. Eur. J. 14 (2008) 10978e10984.
3942e3945.
[25] P.J. Kociensky, Protecting Groups. Georg Thieme Verlag Stuttgart, New York, 1994.