10.1002/ejoc.201800604
European Journal of Organic Chemistry
COMMUNICATION
active gold catalyst was added. The reaction mixture was allowed to stir
at room temperature overnight. The volatiles were removed in vacuo and
the product was purified by silica gel column chromatography (3%
EtOAc/hexanes to 5% EtOAc/hexanes) to provide cyclopentene 28 (74
mg, 78%) as a pale yellow oil. To enol acetate 28 (60 mg, 0.19 mmol, 1
equiv.) in EtOH was added K2CO3 (40 mg, 0.29 mmol, 1.5 equiv.) in one
portion at room temperature. After stirring for 3 h at room temperature,
the reaction mixture was washed with water and extracted with EtOAc
(x3). The combined organic extracts were washed with water, brine, dried
over Na2SO4, and concenrated in vacuo. The product was purified by
silica gel column chromatography (10% EtOAc/hexanes) to provide
cyclopentenone 6 (50 mg, 96%; 75% overall) as a pale yellow oil. 1H
Soc. 2008, 130, 300 – 308; l) D. R. Williams, L. A. Robinson, C. R.
Nevill, J. P. Reddy, Angew. Chem. Int. Ed. 2007, 46, 915 – 918; m) G.
O. Berger, M. A. Tius, J. Org. Chem. 2007, 72, 6473 – 6480.
A. Jolit, C. F. Dickinson, K. Kitamura, P. M. Walleser, G. P. A. Yap, M.
A. Tius Eur. J. Org. Chem. 2017, 40, 6067 – 6076.
[4]
[5]
[6]
L. Zhang, S. Wang, J. Am. Chem. Soc. 2006, 128, 1442 – 1443.
a) D. Scarpi, M. Petrovic
́, B. Fiser, E. Gó
Org. Lett. 2016, 18, 3922 – 3925; b) M. Petrovic
́
Gómez-Bengoa, E. G. Occhiato, Eur. J. Org. Chem. 2015, 3943 –
3956; c) G. Lemière, V. Gandon, K. Cariou, A. Hours, T. Fukuyama, A-
L. Dhimane, L. Fensterbank, M. Malacria, J. Am. Chem. Soc. 2009, 131,
2993 – 3006; d) G. Lemière, V. Gandon, K. Cariou, T. Fukuyama, A-L.
Dhimane, L. Fensterbank, M. Malacria, Org. Lett. 2007, 9, 2207 – 2209;
e) N. Marsch, M. Kock, T. Lindel, Beilstein J. Org. Chem. 2016, 12, 334
– 342. See also related aza-Nazarov reactions: f) Z-X. Ma, S. He, W.
Song, R. P. Hsung Org. Lett. 2012, 14, 5736 – 5739; g) C. Shu, Y-H.
Wang, C-H. Shen, P-P. Ruan, X. Lu, L-W. Ye, Org. Lett. 2016, 18, 3254
– 3257. Au(III)-catalyzed Nazarov cyclizations: h) T. Vaidya, R. Cheng,
P. N. Carlsen, A. J. Frontier, R. Eisenberg, Org. Lett. 2014, 16, 800 –
803; i) M. Hoffmann, J-M. Weibel, P. de Frémont, P. Pale, A. Blanc,
Org. Lett. 2014, 16, 908 – 911.
NMR (300 MHz, CDCl3)
0.99 (t, J = 7.2 Hz, 3H), 1.35 (s, 3H), 1.74 (s,
3H), 2.27 (d, J = 18.1 Hz, 1H), 3.07 (d, J = 18.1 Hz, 1H), 3.78 (dq, J = 7.2,
0.8 Hz, 2H), 5.35 (s, 1H), 6.39 (s, 1H), 7.12 – 7.36 (m, 5H); 13C NMR (75
MHz, CDCl3)
13.6, 20.3, 23.3, 46.8, 52.5, 53.5, 60.8, 119.9, 127.0,
127.2, 128.0, 143.6, 152.7, 174.2, 204.1; IR (neat, cm–1) 3025, 2979,
1723, 1641, 1450, 1387, 1289, 1213, 1028; HRMS (ESI+) m/z calculated
for C17H21O3 [M+H]+: 273.1491; found: 273.1619.
[7]
[8]
a) W. Zi, H. Wu, F. D. Toste, J. Am. Chem. Soc. 2015, 137, 3225 –
3228; b) X. Shi, D. J. Gorin, F. D. Toste, J. Am. Chem. Soc. 2005, 127,
5802 – 5803; c) O. N. Faza, C. S. López, R. Álvarez, A. R. de Lera, J.
Am. Chem. Soc. 2006, 128, 2434 – 2437.
Acknowledgements
We thank the National Science Foundation for their support of
the chemistry department’s NMR facility (NSF-MRI 1532310).
What distinguishes the Rautenstrauch rearrangement from the Au-
catalyzed Nazarov cyclization is the formation during the former of an
intermediate in which the gold atom is bonded to one of the two carbon
atoms that close the ring. a) V. Rautenstrauch, J. Org. Chem. 1984, 49,
950 – 952; b) C. Bürki, A. Whyte, S. Arndt, A. S. K. Hashmi, M. Lautens,
Org. Lett. 2016, 18, 5058 – 5061; c) R. K. Shiroodi, M. Sugawara, M.
Ratushnyy, D. C. Yarbrough, D. J. Wink, V. Gevorgyan, Org. Lett. 2015,
17, 4062 – 4065; d) P. A. Caruana, A. J. Frontier, Tetrahedron 2007, 63,
10646 – 10656.
Keywords: Nazarov • cationic Au(I) • quaternary carbon •
cyclization • diastereoselectivity
[1]
I. N. Nazarov, I. I. Zaretskaya, Izv. Akad. Nauk SSSR, Ser. Khim. 1941,
211-224. Reviews of the Nazarov reaction: a) D. R. Wenz, J. Read de
Alaniz, Eur. J. Org. Chem. 2015, 23 – 37. b) West, F. G.; Scadeng, O.;
Wu, Y.-K.; Fradette, R. J.; Joy, S. Edited by Knochel, Paul; Molander,
[9]
a) C. A. Swift, S. Gronert, Organometallics 2016, 35, 3844 – 3851; b) V.
Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc. 2004,
126, 8654 – 8655; c) N. Marion, S. P. Nolan, Angew. Chem. Int. Ed.
2007, 46, 2750 – 2752. See also footnotes 3 and 4 for a listing of Au(I)-
catalyzed [1,2]- and [1,3]-migration of propargylic esters in: W. Rao, J.
W. Boyle, P. W. H. Chan, Chem. Eur. J. 2016, 22, 6532 – 6536.
Gary
A
From
Comprehensive
Organic
Synthesis
(2nd
Edition) (2014), 5, 827 – 866. c) M. A. Tius, Chem. Soc. Rev. 2014, 43,
2979 – 3002; d) W. T. Spencer III, T. Vaidya, A. J. Frontier, Eur. J. Org.
Chem. 2013, 3621 – 3633; e) N. Shimada, C. Stewart, M. A. Tius,
Tetrahedron 2011, 67, 5851 – 5870.
[10] There are
Nazarov cyclizations as well. a) B. Jacques, D. Hueber, S. Hameury, P.
Braunstein, P. Pale, A. Blanc, P. de Fremont, Organometallics 2014, 33,
a few reports of Au(III)-catalyzed Rautenstrauch and
[2]
For examples of catalytic asymmetric Nazarov cyclizations, see: a) T.
Takeda, S. Harada, A. Nishida, Org. Lett.ˆ∫2015, 17, 5184 – 5187; b) A.
Jolit, P. M. Walleser, G. P. A. Yap, M. A. Tius, Angew. Chem. Int. Ed.
2014, 53, 6180 – 6183; c) G. E. Hutson, Y. E. Türkmen, V. H. Rawal, J.
Am. Chem. Soc. 2013, 135, 4988 – 4991; d) S. Raja, W. Ieawsuwan, V.
Korotkov, M. Rueping, Chem. Asian J. 2012, 7, 2361 – 2366; e) M.
Rueping, W. Ieawsuwan, Chem. Commun. 2011, 47, 11450 – 11452; f)
A. K. Basak, N. Shimada, W. F. Bow, D. A. Vicic, M. A. Tius, J. Am.
Chem. Soc. 2010, 132, 8266 – 8267; g) P. Cao, C. Deng, Y.-Y. Zhou,
X.-L. Sun, J.-C. Zheng, Z. Xie, Y. Tang, Angew. Chem. 2010, 122,
4565 – 4568; Angew. Chem. Int. Ed. 2010, 49, 4463 – 4466; h) M.
Kawatsura, K. Kajita, S. Hayase, T. Itoh, Synlett 2010, 1243 – 1246.
Some recent examples of the use of the Nazarov cyclization in total
synthesis: a) X. Sun, M-L. Tang, P. Peng, Z-Y. Liu, J. Zhang, J-M. Yu,
Chemistry – Eur. J. 2016, 22, 14535 – 14539; b) Z. Zhou, M. A. Tius,
Angew. Chem. Int. Ed. 2015, 54, 6037 – 6040; c) A. Shvartsbart, A. B.
Smith, III, J. Am. Chem. Soc. 2015, 137, 3510 – 3519; d) B. N. Kakde,
P. Kumari, A. Bisai, J. Org. Chem. 2015, 80, 9889 – 9899; e) Y. Shi, B.
Yang, S. Cai, S. Gao, Angew. Chem. Int. Ed. 2014, 53, 9539 – 9543; f)
B. J. Moritz, D. J. Mack, L. Tong, R. J. Thomson, Angew. Chem. Int. Ed.
2014, 53, 2988 – 2991; g) J. A. Malona, K. Cariou, W. T. Spencer, III, A.
J. Frontier, J. Org. Chem. 2012, 77, 1891 – 1908; h) W-D. Z. Li, W-G.
Duo, C-H. Zhuang, Org. Lett. 2011, 13, 3538 – 3541; i) H. M. Cheng, W.
Tian, P. A. Peixoto, B. Dhudshia, D. Y-K. Chen, Angew. Chem. Int. Ed.
2011, 50, 4165 – 4168; j) K. Yaji, M. Shindo, Tetrahedron 2010, 52,
9808 – 9813; k) W. He, J. Huang, X. Sun, A. J. Frontier, J. Am. Chem.
́
2326 – 2335; b) M. E. Krafft, D. V. Vidhani, J. W. Crana, M. Manoharan,
Chem. Commun. 2011, 47, 6707 – 6709; c) T. Jin, Y. Yamamoto, Org.
Lett. 2008, 10, 3137 – 3139; d) S. Karmakar, A. Kim, C. H. Oh,
Synthesis 2009, 194 – 198; e) T. Vaidya, R. Cheng, P. N. Carlsen, A. J.
Frontier, R. Eisenberg, Org. Lett. 2014, 16, 800 – 803.
[11] The synthesis of the enyne starting materials is described in the S.I.
[12] D. Leboeuf, C. M. Wright, A. J. Frontier, Chemistry – Eur. J. 2013, 19,
4835 – 4841.
[13] P. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste, J. Am. Chem.
Soc. 2009, 131, 6348 – 6349.
[3]
[14] We performed a limited screen of counterions and found that the
catalysts that had been generated from AgNTf2 and AgSbF6 led to
equivalent results, whereas catalysts generated from AgBF4 and AgOTf
led to slower reactions and to a minor byproduct. See: Z. Lu, J. Han, O.
E. Okoromoba, N. Shimizu, H. Amii, C. F. Tormena, G. B. Hammond, B.
Xu, Org. Lett. 2017, 19, 5848 – 5851.
[15] We screened several solvents with the following results: in PhMe or
Et2O the reaction was slow with a trace of product formed after 24 h;
there was no reaction in EtOAc; a slow reaction took place in MeNO2
leading to ca. 20% conversion to product after 24 h; MeCN led to a
complex reaction mixture containing none of the desired product after
24 h; in DMF or THF after 24 h little reaction took place, but there was
no desired product formed.
This article is protected by copyright. All rights reserved.