ACCEPTED MANUSCRIPT
[1]
[2]
M. Besson, P. Gallezot and C. Pinel, Chem. Rev., 2014, 114, 1827-1870.
D. Mandelli, W. Carvalho, L. S. Shul'pina, A. Kirillov, M. V. Kirillova, A. J. L. Pombeiro and G. B. Shul'pin, in Advances in Organometallic
Chemistry and Catalysis, ed. A. J. L. Pombeiro, John Wiley & Sons, Inc., Hoboken, NJ (USA), 2014, ch. 19, p. 247-257.
C. Crotti, J. Kašpar and E. Farnetti, Green Chem., 2010, 12, 1295–1300.
J. H. Walton and D. P. Graham, J. Amer. Chem. Soc., 1928, 50, 1641-1648.
P.Pullanikat, J.H.Lee, K.S.Yoo and K.W.Jung, Tet. Lett., 2013, 54, 4463-4466.
E. G. Rodrigues, M. F. R. Pereira and J. J. M. Órfão, Catal. Comm., 2012, 25, 110.
J. Xu, Y. Zhao, H. Xu, H. Zhang, B. Yu, L. Hao and Z. Liu, Appl. Catal. B, 2014, 154-155, 267-273.
J. Zhang, M. Sun and Y. Han, RSC Adv., 2014, 4, 35463-35466.
A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy and M. Beller, Science, 2011, 333, 1733-1736.
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10] W.-Y. Yu, G. M. Mullen, D. W. Flaherty and C. B. Mullins, J. Amer. Chem. Soc., 2014, 136, 11070-11078.
[11] T. Zell, B. Butschke, Y. Ben-David and D. Milstein, Chem. Eur. J., 2013, 19, 8068-8072.
[12] J. H. Barnard, C. Wang, N. G. Berry and J. Xiao, Chem. Sci., 2013, 4, 1234-1244.
[13] N. Armaroli and V. Balzani, Angew. Chem. Int. Ed., 2007, 46, 52-66.
[14] T. P. Vispute, H. Zhang, A. Sanna, R. Xiao and G. W. Huber, Science, 2010, 330, 1222-1227.
[15] J. A. Turner, Science, 1999, 285, 687-689.
[16] W. Supronowicz, I. A. Ignatyev, G. Lolli, A. Wolf, L. Zhao and L. Mleczko, Green Chem., 2015, 17, 2904–2911.
[17] P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35, 686.
[18] C. R. McElroy, A. Constantinou, L. C. Jones, L. Summerton and J. H. Clark, Green Chem., 2015, 17, 3111-3121.
[19] I. Bauer and H.-J. Knölker, Chem. Rev., 2015, 115, 3170-3387.
[20] H. J. H. Fenton and H. Jackson, J. Chem. Soc., 1899, 75, 1-11.
[21] S. Martín and A. Garrone, Tet. Lett., 2003, 44, 549-552.
[22] U. R. Pillai and E. Sahle-Demessie, Appl. Cat. A, 2003, 245, 103-109.
[23] V. F. Laurie and A. L. Waterhouse, J. Agr. Food Chem., 2006, 54, 4668-4673.
[24] F. Shi, M. K. Tse, Z. Li and M. Beller, Chem. Eur. J., 2008, 14, 8793-8797.
[25] A. Al-Hunaiti, T. Niemi, A. Sibaouih, P. Pihko, M. Leskelä and T. Repo, Chem. Commun., 2010, 46, 9250-9252.
[26] B. Biswas, A. AlHunaiti, M. T. Räisänen, S. Ansalone, M. Leskelä, T. Repo, Y.-T. Chen, H.-L. Tsai, A. D. Naik, A. P. Railliet, Y. Garcia,
R. Ghosh and N. Kole, Eur. J. Inorg. Chem., 2012, 4479-4485.
[27] M. Lenze, E. T. Martin, N. P. Rath and E. B. Bauer, ChemPlusChem, 2013, 78, 101-116.
[28] M. Lenze and E. B. Bauer, Chem. Commun., 2013, 49, 5889-5891.
[29] C. Crotti and E. Farnetti, J. Mol. Cat. A: Chem.1, 2015, 396, 353-359.
[30] S.-S. Liu, K.-Q. Sun and B.-Q. Xu, ACS Catal., 2014, 4, 2226-2230.
[31] A. Villa, N. Dimitratos, C. E. Chan-Thaw, C. Hammond, L. Prati and G. J. Hutchings, Acc. Chem. Res., 2015, 48, 1403-1412.
[32] Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez and M. T. M. Koper, ACS Catal., 2012, 2, 759-764.
[33] D. T. Sawyer, A. Sobkowiak and T. Matsushita, Acc. Chem. Res., 1996, 29, 409-416.
[34] S.Rachmilovich-Calis, A.Masarwa, N.Meyerstein, D.Meyerstein and R.van Eldik, Chem. Eur. J., 2009, 15, 8303-8309.
[35] D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci and R. Vigola, Angew. Chem. Int. Ed., 2000, 39, 4321-4323.
Figure Caption list
Scheme 1. Possible products of glycerol oxidation.
-2
Figure 1. Glycerol oxidation by H2O2 in MeCN:H2O (2:1) catalyzed by Fe(OTf)2 + BPA (1:3). Exp. conditions: [Fe] = 1.0x10 M;
[glycerol]/[Fe]=35; (-●-): glycerol; (--): formic acid; (--): DHA; (-+-): glyceraldehyde; (-✕-): glycolic acid.
Scheme 2. Glycerol oxidation to formic acid (FA) and glycolic acid (GA).
-2
Figure 2. Glycerol oxidation by H2O2 in MeCN:H2O (2:1) catalyzed by Fe(OTf)2. Exp. conditions: [Fe] = 1.0x10 M; [glycerol]/[Fe]=35; (-●-):
glycerol; (--): formic acid; (--): DHA; (-✕-): glycolic acid.
6