Efficient Hydroformylation in Dense Carbon Dioxide using Phosphorus Ligands
UPDATES
[7] W. G. Hollis Jr. , M. G. Poferl, M. D. Wolter, P. A.
Deck, C. Slebodnick, J. Fluorine Chem. 2008, 129, 119–
124.
Acknowledgements
The Netherlands Organization for Scientific Research
(NWO) is acknowledged for the financial support (VIDI
STW.07055). We thank G. O. H. M. Puts for his assistance
with the solubility measurements.
[8] a) Y. Hu, W. Chen, L. Xu, J. Xiao, Organometallics
2001, 20, 3206–3208; b) M. F. Sellin, I. Bach, J. M.
Webster, F. Montilla, V. Rosa, T. Avilꢄs, M. Poliakoff,
D. J. Cole-Hamilton, J. Chem. Soc. Dalton Trans. 2002,
24, 4569–4576; c) C. D. Ablan, D. Sheppard, E. J.
Beckman, M. M. Olmstead, P. G. Jessop, Green Chem.
2005, 7, 590–594; d) A. Galia, A. Cipollina, G. Filardo,
O. Scialdone, M. Ferreira, E. Monflier, J. Supercrit.
Fluids 2008, 46, 63–70; e) M. F. Sellin, D. J. Cole-Ham-
ilton, J. Chem. Soc. Dalton Trans. 2000, 1681–1683.
[9] For example: a) J. M. Dobbs, J. M. Wong, R. J. Lahiere,
K. P. Johnston, Ind. Eng. Chem. Res. 1987, 26, 56–65;
b) J. Xiao, S. C. A. Nefkens, P. G. Jessop, T. Ikariya, R.
Noyori, Tetrahedron Lett. 1996, 37, 2813–2816.
[10] A. Galia, E. C. Navarre, O. Scialdone, M. Ferreira, G.
Filardo, S. Tilloy, E. Monflier, J. Phys. Chem. B 2007,
111, 2573–2578.
References
[1] C. D. Frohning, C. W. Kohlpaintner, H.-W. Bohnen, in:
Applied Homogeneous Catalysis, 2nd edn., Vol. 1,
(Eds.: B. Cornils, W. A. Herrmann), Wiley-VCH, Wein-
heim, 2002, pp 31–103.
[2] a) P. G. Jessop, W. Leitner, in: Chemical Synthesis
Using Supercritical Fluids, (Eds.: P. G. Jessop, W. Leit-
ner), Wiley-VCH, Weinheim, 1999, pp 1–36; b) W.
Leitner, Acc. Chem. Res. 2002, 35, 746–756; c) S. Bek-
tesevic, A. M. Kleman, A. E. Marteel-Parrish, M. A.
Abraham, J. Supercrit. Fluids 2006, 38, 232–241;
d) P. G. Jessop, J. Supercrit. Fluids 2006, 38, 211–231;
e) E. J. Beckman, J. Supercrit. Fluids 2004, 28, 121–
191; f) A. Stobrawe, P. Makarczyk, C. Maillet, J.-L.
Muller, W. Leitner, Angew. Chem. 2008, 120, 6776–
6779; Angew. Chem. Int. Ed. 2008, 47, 6674–6677.
[3] In several homogeneously and heterogeneously cata-
lyzed reactions the use of carbon dioxide to pressures
above 10 MPa results in a change in selectivity and ac-
tivity. For example: a) Y. Guo, A. Akgerman, Ind. Eng.
Chem. Res. 1997, 36, 4581–4585; b) C. A. G. Carter,
R. T. Baker, S. P. Nolan, W. Tumas, Chem. Commun.
2000, 347–348; c) K. Wittmann, W. Wisniewski, R.
Mynott, W. Leitner, C. Ludger Kranemann, T. Rische,
P. Eilbracht, S. Kluwer, J. Meine Ernsting, C. J. Elsevi-
er, Chem. Eur. J. 2001, 7, 4584–4589; d) H.-S. Phiong,
C. G. Cooper, A. A. Adesina, F. P. Lucien, J. Supercrit.
Fluids 2008, 46, 40–46.
[11] P. G. Jessop, B. Subramaniam, Chem. Rev. 2007, 107,
2666–2694.
[12] The efficiency of a homogeneous catalyst under reac-
tion conditions can be indicated by the turnover
number (TON) and the turnover frequency (TOF). By
most researchers in the field of homogeneous catalysis
it is common to define the TOF as the rate of product
formation divided by the total amount of metal com-
plex. See: a) D. F. Shriver, P. W. Atkins, C. H. Langford,
Inorganic Chemistry, 2nd edn., Oxford University
Press, Oxford, 1994, pp 709–747; b) R. Shirt, M. Gar-
land, D. W. T. Rippin, Anal. Chim. Acta 1998, 374, 67–
91.
[13] a) A. C. J. Koeken, M. C. A. van Vliet, L. J. P. van den
Broeke, B.-J. Deelman, J. T. F. Keurentjes, Adv. Synth.
Catal. 2006, 348, 1553–1559; b) A. C. J. Koeken,
M. C. A. van Vliet, L. J. P. van den Broeke, B.-J. Deel-
man, J. T. F. Keurentjes, Adv. Synth. Catal. 2008, 350,
179–188.
[14] J. Ke, B. Han, M. W. George, H. Yan, M. Poliakoff, J.
Am. Chem. Soc. 2001, 123, 3661–3670.
[15] T. Jiang, Z. Hou, B. Han, Liang Gao, Z. Liu, J. He, G.
[4] a) P. G. Jessop , T. Ikariya, R. Noyori, Chem. Rev. 1999,
99, 475–493; b) A. Baiker, Chem. Rev. 1999, 99, 453–
473.
Yang, Fluid Phase Equilib. 2004, 215, 85–89.
[5] a) M. Beller, B. Cornils, C. D. Frohning, C. W. Kohl-
[16] R. Fink, E. J. Beckman, in: Chemical Synthesis Using
Supercritical Fluids, (Eds.: P. G. Jessop, W. Leitner),
Wiley-VCH, Weinheim, 1999, pp 67–87.
[17] Example of a recent report on synthesis at a pressure
above 30 MPa: D. C. J. Waalboer, M. C. Schaapman,
F. L. van Delft, F. P. J. T. Rutjes, Angew. Chem. 2008,
120, 6678–6680; Angew. Chem. Int. Ed. 2008, 47, 6576–
6578.
paintner, J. Mol. Catal.
A
1995, 104, 17–85;
b) P. W. N. M. van Leeuwen, in Rhodium Catalyzed
Hydroformylation, (Eds.: P. W. N. M. van Leeuwen, C.
Claver), Kluwer Academic Publishers, Dordrecht, 2000,
pp 1–13.
[6] a) S. Kainz, D. Koch, W. Baumann, W. Leitner, Angew.
Chem. 1997, 109, 1699–1701; Angew. Chem. Int. Engl.
Ed. 1997, 15, 1628–1630; b) D. R. Palo, C. Erkey, Ind.
Eng. Chem. Res. 1998, 37, 4203–4206; c) D. Koch, W.
Leitner, J. Am. Chem. Soc. 1998, 120, 13398–13404;
d) A. M. Banet Osuna, W. Chen, E. G. Hope, R. D. W.
Kemmitt, D. R. Paige, A. M. Stuart, J. Xiao, L. Xu, J.
Chem. Soc. Dalton Trans. 2000, 22, 4052–4055; e) D. R.
Palo, C. Erkey, Organometallics 2000, 19, 81–86; f) K.-
D. Wagner, N. Dahmen, E. Dinjus, J. Chem. Eng. Data
2000, 45, 672–677; g) Y. Shimoyama, M. Sonoda, K.
Miyazaki, H. Higashi, Y. Iwai, Y. Arai, J. Supercrit.
Fluids 2008, 44, 266–272; h) C. T. Estorach, A. Orejꢃn,
A. M. Masdeu-Bultꢃ, Green Chem. 2008, 10, 545–552.
[18] A. C. J. Koeken, S. J. M. de Bakker, H. M. Costerus,
L. J. P. van den Broeke, B.-J. Deelman, J. T. F. Keur-
entjes, J. Supercrit. Fluids 2008, 46, 47–56.
[19] For example: a) free radical polymerization of ethene:
A. Rudin, The Elements of Polymer Science and Engi-
neering, 2nd edn., Academic Press, London, 1999,
pp 349–376; b) ammonia synthesis, see, for example:
R. A. van Santen, J. W. Niemantsverdriet, Chemical
Kinetics and Catalysis, Plenum Press, New York, 1995,
pp 9–10; c) A. Nielsen, H. Bohlbro, J. Am. Chem. Soc.
1952, 74, 963–966; d) cobalt-catalyzed hydroformyla-
Adv. Synth. Catal. 2009, 351, 1442 – 1450
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1449