Please do not adjust margins
RSC Advances
Page 4 of 4
COMMUNICATION
Journal Name
J Hazard Mater, 2013, 250, 147-154.
4. S. C. Kim and W. G. Shim, Appl Catal B-Environ, 2010, 98,
180-185.
5. S. Ivanova, C. Petit and V. Pitchon, Gold Bull, 2006, 39, 3-8.
6. A. C. Gluhoi, N. Bogdanchikova and B. E. Nieuwenhuys, J
Catal, 2005, 232, 96-101.
7. T. Maillet, C. Solleau, J. Barbier-Jr and D. Duprez, Appl Catal
B-Environ, 1997, 14, 85-95.
8. H. H. Chen, Y. Yan, Y. Shao and H. P. Zhang, Rsc Adv, 2014, 4,
55202-55209.
9. P. Yang, S. S. Yang, Z. N. Shi, Z. H. Meng and R. X. Zhou, Appl
Catal B-Environ, 2015, 162, 227-235.
10. M. H. Khedr, K. S. A. Halim, M. I. Nasr and A. M. El-Mansy,
Mat Sci Eng a-Struct, 2006, 430, 40-45.
contribute to accelerate the oxidation processes and enhance the
catalytic performance for oxidation of C2H2 and C3H6.
DOI: 10.1039/C5RA05635G
It is generally accepted that the oxidation of low-rank
hydrocarbons over TMOs follows the redox mechanism.30 Firstly,
Cu2O reacts with oxygen, giving rise to CuO. Secondly, the reaction
of C2H2 and C3H6 with the trapped or lattice oxygen occurs, leading
to CuO reduction and release of oxygen to form Cu2O. From the
2−
XPS results, both OL and Oads contain mainly O2 and O– species.
2−
Both O2 and O– are strongly electrophilic reactants. They can
attack an organic molecule in the region of its highest electron
density and result in the oxidation of the carbon skeleton. As the
electrophilic oxygen species such as OL and Oads are generally
responsible for the total oxidation of hydrocarbons to CO2, these
2−
electrophilic oxygen species (O2 or O−) presented at the surface of
11. S. Somekawa, T. Hagiwara, K. Fujii, M. Kojima, T. Shinoda, K.
Takanabe and K. Domen, Appl Catal a-Gen, 2011, 409, 209-214.
12. A. Urbutis and S. Kitrys, Chemija, 2013, 24, 111-117.
13.S. R. Wang, H. X. Zhang, Y. S. Wang, L. W. Wang and Z. Gong,
Rsc Adv, 2014, 4, 369-373.
Cu2O are expected to benefit for the complete conversion of C2H2
and C3H6 (see Fig. ESI S4).32 Moreover, the hollow ball-like
morphology revealed by the microstructure analysis could expose
more surface area and adsorb more oxygen, which would make the
oxidation occur at relatively low temperatures.
14. Z. Y. Tian, N. Bahlawane, F. Qi and K. Kohse-Höinghaus, Catal
Commun, 2009, 11, 118-122.
15. S. C. Kim and W. G. Shim, Appl Catal B-Environ, 2008, 79,
149-156.
16.R. Rostami and A. J. Jafari, J Environ Health Sci, 2014, 12, 1-10.
17. P. Mallick, Proceedings of the Natinal Academy of Sciences
India Section A-Physical Sciences, 2014, 84, 387-389.
18. M. Ali, F. Yehya, A. K. Chaudhary and V. V. S. S. Srikanth,
Conference on Light and Its Interactions with Matter, 2014,
1620, 327-331.
19. M. Ali, N. K. Rotte and V. V. S. S. Srikanth, Mater Lett, 2014,
128, 253-255.
20. F. Hu, K. C. Chan, T. M. Yue and C. Surya, Thin Solid Films,
2014, 550, 17-21.
21. J. P. Zhang and L. P. Yu, Journal of Materials Science-Materials
in Electronics, 2014, 25, 5646-5651.
22. P. Mountapmbeme Kouotou, Z. Y. Tian, U. Mundloch, N.
Bahlawane and K. Kohse-Höinghaus, Rsc Adv, 2012, 2, 10809-
10812.
23. Z. Y. Tian, P. Mountapmbeme Kouotou, N. Bahlawane and P. H.
Tchoua Ngamou, J Phys Chem C, 2013, 117, 6218-6224.
24. M. C. Biesinger, L. W. M. Lau, A. R. Gerson and R. S. C. Smart,
Applied Surface Science, 2010, 257, 887-898.
25. Z. Y. Tian, H. J. Herrenbruck, P. Mountapmbeme Kouotou, H.
Vieker, A. Beyer, A. Golzhauser and K. Kohse-Höinghaus, Surf
Coat Tech, 2013, 230, 33-38.
26. J. M. Valtierra, J. Ramírez-Ortiz, V. M. Arroyo-Rojas and F.
Ruiz, Applied Catalysis A, 2003, 238, 1-9.
27. G. G. Condorelli, G. Malandrino and I. Fragala, Chem Mater,
1994, 6, 1861-1866.
28. Z. Y. Tian, N. Bahlawane, V. Vannier and K. Kohse-Höinghaus,
P Combust Inst, 2013, 34, 2261-2268.
29. X. J. Yu, Y. C. Wei, L. Z. Huang, J. F. Niu, J. Zhang, X. M. Li
and B. H. Yao, Mater Chem Phys, 2014, 148, 727-733.
30. X. S. Jiang, M. Zhang, S. W. Shi, G. He, X. P. Song and Z. Q.
Sun, J Electrochem Soc, 2014, 161, D640-D643.
31. Z. Y. Tian, P. H. Tchoua Ngamou, V. Vannier, K. Kohse-
Höinghaus and N. Bahlawane, Appl Catal B-Environ, 2012, 117,
125-134.
32. P. Mountapmbeme Kouotou, H. Vieker, Z. Y. Tian, P. H.
Tchoua Ngamou, A. El Kasmi, A. Beyer, A. Golzhauser and K.
Kohse-Höinghaus, Catal Sci Technol, 2014, 4, 3359-3367.
Fig. 8 Outlet profiles of C2H2 and C3H6 oxidation over NCM and
mesh grid of stainless steel coated with Cu2O.
4. Conclusions
This work presents a detailed introduction of facile synthesis of
Cu2O thin films by using a home-made PSE-CVD system for
catalytic oxidation of C2H2 and C3H6. XRD, SEM and XPS were
employed to characterize the physicochemical properties of the
deposited films. The catalytic oxidation of C2H2 and C3H6 over
Cu2O samples was tested at atmospheric pressure in a fixed-bed
quartz reactor. XRD analysis indicates that the prepared films are
pure Cu2O. The results show that the Cu2O leads the complete
oxidation decreased by 175 °C for C2H2 and 250 °C for C3H6
relative to the non-coated mesh. According to the microstructure and
XPS results, the lattice and adsorbed oxygen as well as the hollow
ball-like geometry could benefit for the deep oxidation of C2H2 and
C3H6. These results reveal that Cu2O can be easily prepared and
show good potential in the catalytic abatement of VOCs.
Acknowledgements
Prof. ZYT thanks the financial support from the Recruitment
Program of Global Youth Experts (Grant No. Y41Z024BA1).
Notes and references
* Corresponding author. Tel/Fax: +86-10 82543184, E-mail:
1. O. L. Olga, S. S. Yu, N. S. Valentin and I. T. Nikolai, Nato Sci S
Ss Iv Ear, 2002, 16, 243-247.
2. X. K. Chen, L. L. Feng, H. L. Luo and H. M. Cheng, Environ Sci
Pollut R, 2014, 21, 12868-12882.
4 | J. Name., 2015, 00, 1-4
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins