Inorganic Chemistry
Communication
(20) Zhou, X.; Li, X.; Sun, H.; Sun, P.; Liang, X.; Liu, F.; Hu, X.; Lu, G.
Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive
acetone sensor. ACS Appl. Mater. Interfaces 2015, 7, 15414−15421.
(21) Zhou, X.; Liu, J.; Wang, C.; Sun, P.; Hu, X.; Li, X.; Shimanoe, K.;
Yamazoe, N.; Lu, G. Highly sensitive acetone gas sensor based on
porous ZnFe2O4 nanospheres. Sens. Actuators, B 2015, 206, 577−583.
(22) Wang, Y.; Liu, F.; Yang, Q.; Gao, Y.; Sun, P.; Zhang, T.; Lu, G.
Mesoporous ZnFe2O4 prepared through hard template and its acetone
sensing properties. Mater. Lett. 2016, 183, 378−381.
(23) Zhang, G.; Li, C.; Cheng, F.; Chen, J. ZnFe2O4 tubes: Synthesis
and application to gas sensors with high sensitivity and low-energy
consumption. Sens. Actuators, B 2007, 120, 403−410.
(24) Oh, M. H.; Yu, T.; Yu, S.-H.; Lim, B.; Ko, K.-T.; Willinger, M.-G.;
Seo, D.-H.; Kim, B. H.; Cho, M. G.; Park, J.-H.; Kang, K.; Sung, Y.-E.;
Pinna, N.; Hyeon, T. Galvanic replacement reactions in metal oxide
nanocrystals. Science 2013, 340, 964−968.
REFERENCES
■
(1) Cao, W.; Duan, Y. Breath analysis: potential for clinical diagnosis
and exposure assessment. Clin. Chem. 2006, 52, 800−811.
́ ̀
(2) Grelet, C.; Bastin, C.; Gele, M.; Daviere, J.-B.; Johan, M.; Werner,
A.; Reding, R.; Fernandez Pierna, J. A.; Colinet, F. G.; Dardenne, P.;
Gengler, N.; Soyeurt, H.; Dehareng, F. Development of Fourier
transform mid-infrared calibrations to predict acetone, β-hydroxybuty-
rate, and citrate contents in bovine milk through a European dairy
network. J. Dairy Sci. 2016, 99, 4816−4825.
(3) Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M.
Mesoporous materials as gas sensors. Chem. Soc. Rev. 2013, 42, 4036−
4053.
(4) Zhao, Z.; Tian, J.; Sang, Y.; Cabot, A.; Liu, H. Structure, synthesis,
and applications of TiO2 nanobelts. Adv. Mater. 2015, 27, 2557−2582.
(5) Xu, J.; Pan, Q.; Shun, Y.; Tian, Z. Grain size control and gas sensing
properties of ZnO gas sensor. Sens. Actuators, B 2000, 66, 277−279.
(6) Zhou, X.; Feng, W.; Wang, C.; Hu, X.; Li, X.; Sun, P.; Shimanoe, K.;
Yamazoe, N.; Lu, G. Porous ZnO/ZnCo2O4 hollow spheres: synthesis,
characterization, and applications in gas sensing. J. Mater. Chem. A 2014,
2, 17683−17690.
(7) Chen, Y. J.; Zhu, C. L.; Wang, L. J.; Gao, P.; Cao, M. S.; Shi, X. L.
Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/
SnO2 core-shell nanorods. Nanotechnology 2009, 20, 045502.
(8) Huang, H.; Gong, H.; Chow, C. L.; Guo, J.; White, T. J.; Tse, M. S.;
Tan, O. K. Low-temperature growth of SnO2 nanorod arrays and
tunable n-p-n sensing response of a ZnO/SnO2 heterojunction for
exclusive hydrogen sensors. Adv. Funct. Mater. 2011, 21, 2680−2686.
(9) Li, C. C.; Yin, X. M.; Li, Q. H.; Wang, T. H. Enhanced gas sensing
properties of ZnO/SnO2 hierarchical architectures by glucose-induced
attachment. CrystEngComm 2011, 13, 1557−1563.
(10) Sun, P.; Cai, Y.; Du, S.; Xu, X.; You, L.; Ma, J.; Liu, F.; Liang, X.;
Sun, Y.; Lu, G. Hierarchical α-Fe2O3/SnO2 semiconductor composites:
Hydrothermal synthesis and gas sensing properties. Sens. Actuators, B
2013, 182, 336−343.
(11) Bao, M.; Chen, Y.; Li, F.; Ma, J.; Lv, T.; Tang, Y.; Chen, L.; Xu, Z.;
Wang, T. Plate-like p-n heterogeneous NiO/WO3 nanocomposites for
high performance room temperature NO2 sensors. Nanoscale 2014, 6,
4063−4066.
(12) Jeong, H. M.; Kim, J. H.; Jeong, S. Y.; Kwak, C. H.; Lee, J. H.
Co3O4-SnO2 hollow heteronanostructures: facile control of gas
selectivity by compositional tuning of sensing materials via galvanic
replacement. ACS Appl. Mater. Interfaces 2016, 8, 7877−7883.
(13) Guo, Y.; Zhang, N.; Wang, X.; Qian, Q.; Zhang, S.; Li, Z.; Zou, Z.
A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for
boosting photoelectrochemical water splitting. J. Mater. Chem. A 2017,
5, 7571−7577.
(14) Liu, B.; Li, X.; Zhao, Q.; Hou, Y.; Chen, G. Self-templated
formation of ZnFe2O4 double-shelled hollow microspheres for photo-
catalytic degradation of gaseous o-dichlorobenzene. J. Mater. Chem. A
2017, 5, 8909−8915.
(15) Zhang, Y.; Shi, Q.; Schliesser, J.; Woodfield, B. F.; Nan, Z.
Magnetic and thermodynamic properties of nanosized Zn ferrite with
normal spinal structure synthesized using a facile method. Inorg. Chem.
2014, 53, 10463−10470.
(16) Sun, M.; Chen, Y.; Tian, G.; Wu, A.; Yan, H.; Fu, H. Stable
mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen
evolution reaction. Electrochim. Acta 2016, 190, 186−192.
(17) Hwang, H.; Shin, H.; Lee, W. J. Effects of calcination temperature
for rate capability of triple-shelled ZnFe2O4 hollow microspheres for
lithium ion battery anodes. Sci. Rep. 2017, 7, 46378.
(25) Wang, X.; Feng, J.; Bai, Y.; Zhang, Q.; Yin, Y. Synthesis,
properties, and applications of hollow micro-/nanostructures. Chem.
Rev. 2016, 116, 10983−11060.
(26) Yu, L.; Wu, H. B.; Lou, X. W. Self-templated formation of hollow
structures for electrochemical energy applications. Acc. Chem. Res. 2017,
50, 293−301.
(27) Zhou, L.; Zhuang, Z.; Zhao, H.; Lin, M.; Zhao, D.; Mai, L.
Intricate hollow structures: controlled synthesis and applications in
energy storage and conversion. Adv. Mater. 2017, 29, 1602914.
(28) Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang,
D. General synthesis and gas-sensing properties of multiple-shell metal
oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 50, 2738−2741.
(29) Lou, X. W.; Archer, L. A.; Yang, Z. Hollow micro-/
nanostructures: synthesis and applications. Adv. Mater. 2008, 20,
3987−4019.
(30) Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y.; Jin, Q.; Zhang,
L.; Yu, R.; Ma, G.; Su, Z.; Zhao, H.; Wang, D. Multi-shelled hollow
micro- nanostructures. Chem. Soc. Rev. 2015, 44, 6749−6773.
(31) Zhao, S.-N.; Song, X.-Z.; Song, S.-Y.; Zhang, H.-j. Highly efficient
heterogeneous catalytic materials derived from metal-organic frame-
work supports/precursors. Coord. Chem. Rev. 2017, 337, 80−96.
(32) Cao, X.; Tan, C.; Sindoro, M.; Zhang, H. Hybrid micro- nano-
structures derived from metal−organic frameworks preparation and
applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46,
2660−2677.
(33) Han, L.; Yu, X.-Y.; Lou, X. W. Formation of prussian-blue-analog
nanocages via a direct etching method and their conversion into Ni-Co-
mixed oxide for enhanced oxygen evolution. Adv. Mater. 2016, 28,
4601−4605.
(34) Sun, D.; Ye, L.; Sun, F.; Garcia, H.; Li, Z. From mixed-metal
MOFs to carbon-coated core-shell metal alloy@metal oxide solid
solutions: transformation of Co/Ni-MOF-74 to CoxNi1‑x@CoyNi1‑yO@
C for the oxygen evolution reaction. Inorg. Chem. 2017, 56, 5203−5209.
(35) Zou, K. Y.; Liu, Y. C.; Jiang, Y. F.; Yu, C. Y.; Yue, M. L.; Li, Z. X.
Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-
derived CoS2@CNTs with tunable pore diameters for supercapacitors.
Inorg. Chem. 2017, 56, 6184−6196.
(36) Qu, F.; Jiang, H.; Yang, M. MOF-derived Co3O4/NiCo2O4
double-shelled nanocages with excellent gas sensing properties. Mater.
Lett. 2017, 190, 75−78.
(37) Qu, F.; Jiang, H.; Yang, M. Designed formation through a metal
organic framework route of ZnO/ZnCo2O4 hollow core−shell
nanocages with enhanced gas sensing properties. Nanoscale 2016, 8,
16349−16356.
(38) Koo, W. T.; Choi, S. J.; Jang, J. S.; Kim, I. D. Metal-organic
framework templated synthesis of ultrasmall catalyst loaded ZnO/
ZnCo2O4 hollow spheres for enhanced gas sensing properties. Sci. Rep.
2017, 7, 45074.
(39) Song, X.-Z.; Qiao, L.; Sun, K.-M.; Tan, Z.; Ma, W.; Kang, X.-L.;
Sun, F.-F.; Huang, T.; Wang, X.-F. Triple-shelled ZnO/ZnFe2O4
heterojunctional hollow microspheres derived from Prussian Blue
analogue as high-performance acetone sensors. Sens. Actuators, B 2017,
(18) Mady, A. H.; Baynosa, M. L.; Tuma, D.; Shim, J.-J. Facile
microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nano-
composites for efficient removal of organic dyes under UV- and
visible-light irradiation. Appl. Catal., B 2017, 203, 416−427.
(19) Zhou, X.; Wang, B.; Sun, H.; Wang, C.; Sun, P.; Li, X.; Hu, X.; Lu,
G. Template-free synthesis of hierarchical ZnFe2O4 yolk-shell micro-
spheres for high-sensitivity acetone sensors. Nanoscale 2016, 8, 5446−
5453.
D
Inorg. Chem. XXXX, XXX, XXX−XXX