258
Q.G. Yan et al. / Journal of Catalysis 226 (2004) 247–259
Boucouvalas et al. [63] came to a similar conclusion about
POM based on in situ diffuse reflectance infrared Fourier
transform spectroscopy (DRIFTS), kinetics, and isotopic
tracing and TAP reactor studies.
[5] J.P. Van Hook, Catal. Rev.-Sci. Eng. 21 (1981) 1.
[6] M. Prettre, Ch. Eichner, M. Perrin, Trans. Faraday Soc. 43 (1946) 335.
[7] A.T. Ashcroft, A.K. Cheetham, J.S. Foord, M.L.H. Green, C.P. Grey,
A.J. Murrel, P.D.F. Veron, Nature 344 (1990) 319.
[8] V.A. Tsipouriari, Z. Zhang, X.E. Verykios, J. Catal. 179 (1998) 283.
[9] C.T. Au, H.Y. Wang, J. Catal. 167 (1997) 337.
[10] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, J. Ca-
tal. 132 (1991) 117.
[11] E. Ruckenstein, Y.H. Hu, Ind. Eng. Chem. Res. 37 (1998) 1744.
[12] R. Drago, S. Jurczyk, K. Kob, N. Bhattacharyya, A. Masin, J. Catal.
Lett. 51 (1998) 177.
[13] Q. Yan, Z. Chao, T. Wu, W. Weng, H. Wan, Stud. Surf. Sci. Catal. 130D
(2000) 3549.
5. Conclusions
Methane conversion and selectivity to both H2 and CO
were higher over Rh/SiO2 than Ru/SiO2. The CO and H2
selectivities substantially decreased with increasing GHSV
over Ru/SiO2 at 500 ◦C but remained nearly constant over
Rh/SiO2. Both the CH4 conversions and the CO and H2 se-
lectivities increased slightly over both catalysts at 700 ◦C as
GHSV increases, while the CH4 conversions and the CO and
H2 selectivities decreased slightly. CO was the main product
at 700 ◦C when Rh/SiO2 was exposed to methane pulses,
whether the catalyst was preoxidized or prereduced. CO2
was only detected during the first pulse over Rh/SiO2 cat-
alyst. More CO2 was formed over Ru/SiO2 than Rh/SiO2
during the first pulse; CO2 was formed at every pulse over
Ru/SiO2.
[14] K. Nakagawa, N. Ikenaga, Y. Teng, T. Kobayashi, T. Suzuki, J. Ca-
tal. 186 (1999) 405.
[15] H.D. Gesser, N.R. Hunter, Catal. Today 42 (3) (1998) 183.
[16] C. Mirodatos, Stud. Surf. Sci. Catal. 119 (1998) 99.
[17] D.A. Hickman, L.D. Schmidt, AIChE J. 39 (1993) 1164.
[18] D.A. Hickman, L.D. Schmidt, Science 259 (1993) 343.
[19] D.A. Hickman, L.D. Schmidt, J. Catal. 136 (2) (1992) 300.
[20] D.A. Hickman, L.D. Schmidt, J. Catal. 138 (1) (1992) 267.
[21] L.D. Schmidt, M. Huff, S.S. Bharadwaj, Chem. Eng. Sci. 49 (24A)
(1994) 3981.
[22] Y. Boucouvalas, Z.L. Zhang, X.E. Verykios, E. Xenophon, Catal.
Lett. 40 (3,4) (1996) 189.
[23] L.D. Schmidt, M. Huff, S.S. Bharadwaj, Chem. Eng. Sci. 49 (24A)
(1994) 3981.
[24] M.C.J. Bradford, M.A. Vannice, Catal. Today 50 (1999) 87.
[25] O.V. Buyevskaya, D. Wolf, M. Baerns, Catal. Lett. 29 (1994) 249.
[26] P.M. Witt, L.D. Schmidt, J. Catal. 163 (1996) 465.
[27] P.M. Torniainen, X. Chu, L.D. Schmidt, J. Catal. 146 (1994) 1.
[28] W.J.M. Vermeiren, E. Blomsma, P.A. Jacobs, Catal. Today 13 (1992)
427.
CO formed before CO2 over preoxidized or prereduced
Rh/SiO2 at 700 ◦C in transient reactions, induced by chang-
ing the feed gas from helium to CH4/O2/Ar. CO2 is the
primary product over Ru/SiO2 catalysts during transient re-
actions.
In situ microprobe Raman spectroscopy demonstrated
that the oxide levels present on Ru/SiO2 were far higher dur-
ing POM than those on Rh/SiO2. The mechanisms of POM
over these two catalysts are different. On the Rh/SiO2 cat-
alyst, POM is mainly a direct oxidation process, while on
the Ru/SiO2 catalyst, the dominant pathway of POM is the
indirect oxidation process.
[29] D. Dissanayake, M.P. Rosynek, J.H. Lunsford, J. Phys. Chem. 97
(1993) 3644.
[30] V.R. Choudhary, A.M. Rajput, B. Prabhakar, J. Catal. 139 (1993) 326.
[31] C. Elmasides, X.E. Verykios, J. Catal. 203 (2) (2001) 477.
[32] J.E.P. Mallens, J.H.B.J. Hoebink, G.B. Marin, J. Catal. 167 (1997) 43.
[33] E.P.J. Mallens, J.H.B.J. Hoebink, G.B. Marin, Catal. Lett. 33 (1995)
291.
[34] M. Fathi, F. Monnet, Y. Schuurman, A. Holmen, C. Mirodatos, J. Ca-
tal. 190 (2000) 439.
[35] D. Qin, J. Lapszewicz, X. Jiang, J. Catal. 159 (1996) 140.
[36] C. Li, C. Yu, S. Shen, Catal. Lett. 67 (2–4) (2000) 139.
[37] K. Walter, O.V. Buyevskaya, D. Wolf, M. Baerns, Catal. Lett. 29 (1,2)
(1994) 261.
[38] O.V. Buyevskaya, K. Walter, D. Wolf, M. Baerns, Catal. Lett. 38 (1,2)
(1996) 81.
[39] W. Weng, M. Chen, Q. Yan, T. Wu, Z. Chao, Y. Liao, H. Wan, Catal.
Today 63 (2000) 317.
[40] W. Weng, Q. Yan, C. Lou, Y. Liao, et al., Stud. Surf. Sci. Catal. 136
(2001) 233.
Acknowledgments
This project is generously supported by the Ministry of
Science and Technology of China (No. G1999022408), Na-
tional Natural Science Foundation of China (Nos. 20023001,
2002100), the Center for Advanced Vehicular Systems
(CAVS), and the support from the National Science Foun-
dation (EPS0132618) and the US Environmental Protection
Agency (USMGR0129001) are gratefully acknowledged.
[41] C. Hoang-van, Y. Kachaya, S.J. Teichner, J.A. Dalmon, Appl. Catal. 46
(1989) 81.
[42] C.T. Williams, C.G. Takoudis, M.J. Weaver, J. Phys. Chem. B 102
(1998) 406.
[43] L. Ji, J. Lin, H.C. Zeng, Chem. Mater. 13 (7) (2001) 2403.
[44] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon,
Oxford, 1984, p. 1297.
References
[1] J.M. King, M.J. O’Day, J. Power Sources 86 (1–2) (2000) 16.
[2] M.R. Gardiner, J. Cunningham, R.M. Moore, Fuel Cells and Alterna-
tive Fuels/Energy Systems, Society of Automotive Engineers, 2001,
[Special publication] SP-1635, p. 65.
[45] D.D. Beck, T.W. Capehart, C. Wong, D.N. Belton, J. Catal. 144 (1993)
311.
[46] S.Y. Mar, C.S. Chen, Y.S. Huang, K.K. Tiong, Appl. Surf. Sci. 90
(1995) 497.
[3] D.P. Wilkinson, Electrochem. Soc. Interface 10 (1) (2001) 22.
[4] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer,
M.T. Kelly, P.J. Petillo, M. Binder, Int. J. Hydrogen Energy 25 (10)
(2000) 969.
[47] Y.S. Huang, P.C. Liao, Sol. Energy Mater. Sol. Cells 55 (1998) 179.
[48] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, seventy-
eighth ed., Chemical Rubber Company Press, Boca Raton, FL, 1997,
pp. 4–50.