L.Y. Gurskaya et al. / Journal of Fluorine Chemistry 136 (2012) 32–37
35
Table 2
1
a
19
H
and F NMR chemical shifts (ppm) and coupling constants (Hz) for amino- and methylpolyfluoroquinolines.
Compound
Structure
H
F
F
X
W
Y
N
Z
a
1
1
1
1
4
5
W= 2-NH
X, Y, Z = F
2
;
8.05 (dd, J(H-4, H-3) = 9, J(H-4, F-8) = 1, 1H, H-4),
ꢀ153.0 (dd, J(F-5, F-6) = 20, J(F-5, F-8) = 14.5, 1F, F-5),
6.77 (d, J(H-4, H-3) = 9, 1H, H-3), 5.29 (bs, 2H, NH
2
)
ꢀ156.6 (bt, J(F-7, F-8), J(F-7, F-6) ꢂ19.5, 1F, F-7), ꢀ157.2 (m,
6 5 6 7
1
F, F-8), ꢀ166.5 (bt, J
, J
F ;F
ꢂ 20, 1F, F-6)
F
;F
a
a
W= 2-NH
2
;
8.12 (dd, J(H-4, H-3) = 9, J(H-4, F-8) = 1, 1H, H-4),
6.79 (d, J(H-4, H-3) = 9, 1H, H-3), 5.35 (bs, 2H, NH
ꢀ56.6 (dd, J(F-5, CF
3
) = 25, J(F-7, F-8) = 19.5, 3F, CF
3
), ꢀ126.2
3
X = CF ; Y, Z = F
2
)
(bqd, 3J(F-5, CF
3
) = 25, J(F-5, F-8) = 18, 1F, F-5), ꢀ140.2 (m,
1
F, F-7), ꢀ158.6 (bt, J(F-7, F-8) = 19.5, J(F-5, F-8) = 18, 1F, F-8)
W= H; X, Z = F;
Y = CH
8.91 (dd, J(H-2, H-3) = 3, J(H-2, H-4) = 1, 1H, H-2),
8.36 (dt, J(H-4, H-3) = 8.5, J(H-4, H-2), J(H-4, F-8)
ꢀ131.9 (bd, J(F-8, F-5) = 19, 1F, F-8), ꢀ141.8 (bd, J(F-6, F-
5) = 19, 1F, F-6), ꢀ155.5 (t, J(F-8, F-5), J(F-6, F-5) ꢃ 19,
1F, F-5)
3
1
3
.5, 1H, H-4), 7.48 (dd, J(H-4, H-3) = 8.5, J(H-2, H-
) = 4, 1H, H-3), 2.45 (t, 2J(CH , F) = 2, 3H, CH
3
3
)
b
8
1
2
8
0
W= 4-NH
2
;
8.36 (d, J(H-2, H-3) = 5, 1H, H-2), 7.51 (td, 2
ꢀ123.3 (dd, J(F-5, F-8) = 18, J(F-8, H-7) = 10, 1F, F ), ꢀ142.8
ortho
X, Z = F; Y =H
J(H, F) = 10, J(H-7, F-5) = 7.5, 1H, H-7), 6.77 (d,
J(H-2, H-3) = 5, 1H, H-3), 6.44 (bs, 2H, NH
(dd, J(F-6, F-5) = 19, J(F-6, H-7) = 10.5, 1F, F-6), ꢀ147.8 to
5
2
)
ꢀ147.3 (m, 1F, F )
a
W= H; X = CH
Y, Z = F
3
;
8.94 (dd, J(H-2, H-3) = 4, J(H-2, H-4) = 1, 1H, H-2),
8.32 (dt, J(H-4, H-3) = 8.5, J(H-4, H-2), J(H-4, F-
ꢀ131.1 (dm, J(F-5, F-8) =19, 1F, F-5), ꢀ138.6 (dm, J(F-7,
F-8) = 18, 1F, F-7), ꢀ158.1 (bt, J(F-7, F-8), J(F-5, F-8) ꢃ 18,
1F, F-8)
8
) ꢃ 1, 1H, H-4), 7.45 (dd, J(H-4, H-3) = 8.5, J(H-2,
H-3) = 4, 1H, H-3), 2.41 (t, 2J(CH , F) =2, 3H, CH
8.02 (dd, J(H-4, H-3) = 9, J(H-4, F-8) = 1, 1H, H-4),
3
3
)
b
2
1
W= 2-NH
2
;
ꢀ125.7 (ddd, J(F-5, F-8) = 16.5, J(F-5, H-6) = 10, J(F-5, F-7) =2,
1F, F-5), ꢀ136.5 (ddd, J(F-7, F-8) = 18, J(F-7, H-6) = 11, J(F-5,
F-7) = 2, 1F, F-7), ꢀ159.7 (btd, 2J(F, F) = 17–18, J(F-8, H-6) =6,
1F, F-8)
ortho
X = H; Y, Z =F
6.96 (ddd,
), 6.95 (d, J(H-4, H-3) = 9, 1H, H-3), 6.57 (bs, 2H,
NH
J(H, F) = 11, 9, J(H-6, F-8) = 6, 1H, H-
6
2
)
b
2
2
4
W= 4-NH
2
;
8.37 (d, J(H-2, H-3) = 5, 1H, H-2), 7.19 (ddd,
ꢀ115.1 (m, 1F, F-5), ꢀ136.6 (ddd, J(F-7, F-8) = 19, J(F-7,
H-6) = 11, J(F-5, F-7) = 2.5, 1F, F-7), ꢀ154.8 (btd, 2J(F, F)
= 18–19, J(F-8, H-6) = 6, 1F, F-8)
ortho
X = H; Y, Z =F
J(H, F) = 13, 11, J(H-6, F-8) = 6, 1H, H-6), 6.71
(
2
d, J(H-2, H-3) = 5, 1H, H-3), 6.54 (bs, 2H, NH )
a
2
W, Z = H;
8.82 (bd, J(H-2, H-3) = 4, 1H, H-2), 8.25 (d, J(H-4,
H-3) = 8.5, 1H, H-4), 7.47 (bd, J(H-8, F-7) =10, 1H,
H-8), 7.32 (dd, J(H-4, H-3) = 8.5, J(H-2, H-3) = 4, 1H,
ꢀ112.9 (bt, J(F-7, H-8), J(F-7, F-5) ꢃ 9, 1F, F-7), ꢀ125.7
(1F, bd, J(F-7, F-5) = 9, F-5)
3
X = CH ; Y = F
3 3
H-3), 2.32 (bt, 2J(CH , F) = 2, 3H, CH )
b
ortho
2
5
W= 2-NH
2
;
7.99 (d, J(H-4, H-3) = 9, 1H, H-4), 6.98 (dm, J(H-8,
ꢀ109.9 (ddd,
J(H, F) = 10, 9.5, J(F-5, F-7) =7.5, 1F, F-7),
X, Z = H; Y =F
F-7) = 10.5, 1H, H-8), 6.87 (d, J(H-4, H-3) = 9, 1H, H-
ꢀ120.6 (dd, J(F-5, H-6) = 10, J(F-5, F-7) = 7.5, 1F, F-5)
ortho
3
1
), 6.79 (btd, 2
J(H, F) = 10, J(H-4, H-2) = 2.5,
2
H, H-6), 6.27 (bs, 2H, NH )
b,c
2
6
5
7
2
6
W= 4-NH
2
;
8.32 (1H, d, JH
6.62 (1H, d, JH
2
3
¼ 9 , H ), 7.00 (1H, H ),
ꢀ109.7 to ꢀ109.6 (1F, m, F ), ꢀ110.2 (1F, bq, 3J =9.5, F )
;H
;H
3
X, Z = H; Y =F
2
3
¼ 9 , H ), 6.43 (2H, bs, NH
2
)
a
b
c
Solution in CDCl
3
.
Solution in acetone-d
6
.
6
8
8
6
The signals of the H and H are hidden by the H signal of aminoquinoline 25 and H signal of quinoline 5.
2ꢀ
(Scheme 5) seem
speculation is possible, based on the presentation of the dianionic
adducts in terms of canonical structures depicting the negative
charge dispersion over the quinoline core. A peculiar feature of
these adducts is the destabilizing interaction of localized - and
delocalized -charges. From this point of view, the sets of
canonical structures for the 2- and 4-NH -adducts formed by
6-quinolinyl anion 23 (X = F) with NH
p
-
approximately equivalent, which is consistent with the ꢂ1.3:1
ratio of quinolines 21 and 22 obtained from 4 at ꢀ33 8C (Table 1,
entry 18).
s
p
Probably, the situation is similar for the reaction of 5 with
ꢀ
2
excess NH
2
(Scheme 5) also producing comparable amounts of
Scheme 5.