J. Am. Chem. Soc. 1999, 121, 8945-8946
8945
Aliphatic Hydroxylation by a Bis(µ-oxo)dinickel(III)
Complex
,
†
†
‡
Shinobu Itoh,* Hideki Bandoh, Shigenori Nagatomo,
,‡
,†
Teizo Kitagawa,* and Shunichi Fukuzumi*
Department of Material and Life Science
Graduate School of Engineering, Osaka UniVersity
2
-1 Yamada-oka, Suita, Osaka 565-0871, Japan
Institute for Molecular Science
Myodaiji, Okazaki 444-8585, Japan
ReceiVed April 26, 1999
The structure and reactivity of transition-metal complexes of
active oxygen species have long been among the most important
and attractive subjects not only in bioinorganic chemistry but also
in synthetic organic reactions.1 Among several types of mono-,
di-, and polynuclear transition-metal active oxygen complexes,
2 2
Figure 1. Spectral change observed upon addition of 1 equiv of H O
-7
H
II
-4
into an acetone solution of [(L Ni )
-90 °C in a 1-cm path length UV cell; 2-s interval. Inset: First-order
2
(µ-OH)
2
](ClO
4
)
2
(2.5 × 10 M) at
plot based on the absorption change at 408 nm.
2
high-valent bimetallic bis(µ-oxo) complexes [M(µ-O) M] have
recently attracted particular attention as possible reaction inter-
mediates in oxygen metabolism, such as dioxygen activation for
substrate hydroxylation and for tyrosyl radical formation by non-
heme metalloenzymes and dioxygen evolution in photosystem
Chart 1
8-12
II.
plexes have been well characterized by X-ray crystallographic
analyses on M(µ-O) M complexes where M ) Fe, Cu, Mn, and
The reactivities of M(µ-O) M complexes where M )
Fe, Cu, and Mn have also been explored in relation with aliphatic
The structures of high-valent bimetallic bis(µ-oxo) com-
2
11,13-17
Ni.
2
1
4c,18-20
C-H bond activation.
O) M complexes is currently receiving increased attention as the
key step in reactions of methane monooxygenases (MMO) and
Such C-H bond activation by M(µ-
reactivity of which can be finely tuned by varying the metals
and the ligands. In addition, the formation mechanism of M(µ-
2
O) M complexes has yet to be elucidated. We report herein the
2
9b,12
related enzymes.
To elucidate the C-H bond activation
III
III
2
first aliphatic ligand hydroxylation by a Ni (µ-O) Ni complex,
mechanism, it is highly desired to explore C-H bond activation
by different types of active oxygen-metal complexes, the
the formation and decay of which were directly followed by
spectroscopy.21 We have previously reported the same type of
aliphatic hydroxylation of the ligand sidearm in the reaction of
†
Osaka University.
‡
Institute for Molecular Science.
2
2
the Cu(I) complex with O , where a (µ-η :η -peroxo)dicopper-
2
(
1) Valentine, J. S., Foote, C. S., Greenberg, A., Liebman, J. F., Eds. ActiVe
Oxygen in Biochemistry; Chapman and Hall: London, 1995.
2) Foote, C. S., Valentine, J. S., Greenberg, A., Liebman, J. F., Eds. ActiVe
Oxygen in Chemistry; Chapman and Hall: London, 1995.
(II) complex rather than a bis(µ-oxo)dicopper(III) complex was
observed as a reaction intermediate.22 Thus, this study provides
an excellent opportunity to disclose the actual role and reactivity
(
(
(
(
3) Kitajima, N.; Moro-oka, Y. Chem. ReV. 1994, 94, 737-757.
4) Feig, A. L.; Lippard, S. J. Chem. ReV. 1994, 94, 759-805.
5) Pecoraro, V. L.; Baldwin, M. J.; Gelasco, A. Chem. ReV. 1994, 94,
2
2
of bis(µ-oxo) vs (µ-η :η -peroxo) bimetallic complexes in the
C-H bond activation process.
8
07-826.
Bis(µ-hydroxo)dinickel(II) complexes of tridentate ligands LX
X ) OMe, Me, H, Cl; Chart 1) have been prepared as starting
(
6) Solomon, E. I.; Tuczek, F.; Root, D. E.; Brown, C. A. Chem. ReV.
(
1
994, 94, 827-856.
(
(
7) Shilvo, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879-2932.
8) Valentine, A. M.; Lippard, S. J. J. Chem. Soc., Dalton Trans. 1997,
materials by treating the ligand and Ni(ClO
presence of triethylamine in a mixed solvent system of acetone/
methanol/acetonitrile.23 Addition of 1 equiv of H
into an
at a low temperature
)
2
2
‚6H O in the
4
3
925-3931.
2 2
O
(
9) (a) Que, L., Jr. J. Chem. Soc., Dalton Trans. 1997, 3933-3940, (b)
H
II
2+
Shu, L.; Nesheim, J. C.; Kauffmann, K.; Munck, E.; Lipscomb, J. D.; Que,
acetone solution of [(L Ni )
2
(µ-OH) ]
2
L., Jr. Science 1997, 275, 515-518.
(
(
(
(
-90 °C) resulted in a spectral change, as shown in Figure 1,
10) Tommos, C.; Babcock, G. T. Acc. Chem. Res. 1998, 31, 18-25.
11) Ruttinger, W.; Dismukes, G. C. Chem. ReV. 1997, 97, 1-24.
12) Elliot, S. J.; Zhu, M.; Tso, L.; Nguyen, H.-H. T.; Yip, J. H.-K.; Chan,
-
1
where a characteristic absorption band at 408 nm (ꢀ ) 6000 M
-
1
cm ) due to an intermediate readily developed. The same
absorption intensity at 408 nm was obtained even when an excess
S. I. J. Am. Chem. Soc. 1997, 119, 9949-9955.
13) Hsu, H.-F.; Dong, Y.; Shu, L.; Young, V. G., Jr.; Que, L., Jr. J. Am.
Chem. Soc. 1999, 121, 5230-5237.
14) (a) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young,
(
2 2
amount of H O
was added (S1).24 Thus, the stoichiometry of
H
II
(
H
O
2 2
to [(L Ni )
2
(µ-OH)
2
] has been determined to be 1:1. The
V. G., Jr.; Que, L., Jr.; Tolman, W. B. Science 1996, 271, 1397-1400. (b)
Mahapatra, S.; Halfen, J. A.; Wilkinson, E. C.; Pan, G.; Wang, X.; Young,
V. G., Jr.; Cramer, C. J.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc.
-1
18
intermediate exhibited a resonance Raman band at 612 cm ,
-
1
16
which shifted to 580 cm when H
2
O
2
was replaced by H
2
O
2
(S2).24 In addition, this intermediate was ESR silent.
1
996, 118, 11555-11574. (c) Mahadevan, V.; Hou, Z.; Cole, A. P.; Root, D.
E.; Lal, T. K.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 1997, 119,
1996-11997.
15) (a) Que, L., Jr.; True, A. E. Prog. Inorg. Chem. 1990, 38, 97-200.
b) Lal, T. K.; Mukherjee, R. Inorg. Chem. 1998, 37, 2373-2382 and
references therein.
16) Limburg, J.; Vrettos, J. S.; Liable-Sands, L. M.; Rheingold, A. L.;
Crabtree, R. H.; Brudvig, G. W. Science 1999, 283, 1524-1527.
17) Hikichi, S.; Yoshizawa, M.; Sasakura, Y.; Akita, M.; Moro-ka, Y. J.
Am. Chem. Soc. 1998, 120, 10567-10568.
1
(21) So far, only two examples of ligand hydroxylation of mononuclear
Ni(II) complexes by dioxygen have been reported. However, the structure of
the active oxygen intermediate has yet to be identified: (a) Kimura, E.;
Sakonaka, A.; Machida, R. J. Am. Chem. Soc. 1982, 104, 4225-4227. (b)
Chen, D.; Martell, A. E. J. Am. Chem. Soc. 1990, 112, 9411-9412.
(22) (a) Itoh, S.; Kondo, T.; Komatsu, M.; Ohshiro, Y.; Li, C.; Kanehisa,
N.; Kai, Y.; Fukuzumi, S. J. Am. Chem. Soc. 1995, 117, 4714-4715. (b)
Itoh, S.; Nakao, H.; Berreau, L. M.; Kondo, T.; Komatsu, M.; Fukuzumi, S.
J. Am. Chem. Soc. 1998, 120, 2890-2899.
(
(
(
(
(
18) Kim, C.; Dong, Y.; Que, L., Jr. J. Am. Chem. Soc. 1997, 119, 3635-
3
636.
(23) Experimental details about the synthesis and characterization of the
bis(µ-hydroxo)dinickel(II) complexes, the product analysis, and the kinetics
are deposited in Supporting Information.
(
19) Mahapatra, S.; Halfen, J. A.; Tolman, W. B. J. Am. Chem. Soc. 1996,
1
18, 11575-11586.
(
20) Wang, K.; Mayer, J. M. J. Am. Chem. Soc. 1997, 119, 1470-1471.
(24) See Supporting Information.
1
0.1021/ja991326e CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/09/1999