196
I.M. Khan, A. Ahmad / Journal of Molecular Structure 977 (2010) 189–196
of 25–800 °C was used. The combined TGA and DTA thermograms
for charge transfer complex along with acceptor and donor are pre-
sented in Fig. 7. It is clearly observed that [(Phen) (PNP)] exhibit
three step degradation (Fig. 7C) which is typical thermal behavior
of derivatives of PNP as reported elsewhere [23]. In first step,
3.558% of the compound is lost at around 142.2 °C which is thought
to be a consequence of crystallization. This can also be reflected by
References
[1] R.S. Mulliken, J. Am. Chem. Soc. 74 (1952) 811.
[2] R.S. Mulliken, J. Phys. Chem. 56 (1952) 801.
[3] W. Jarzeba, J. Mol. Liq. 68 (1996) 1–56.
[4] R. Mandal, S.C. Lahiri, J. Indian Chem. Soc. 76 (1999) 347.
[5] F. Gutmann, C. Johnson, H. Keyzer, J. Molnar, Charge Transfer Complexes in
Biochemistry Systems, Marcel Dekker Inc., 1992.
[6] D.J. Brown, S.F. Mason, The Pyrimidines, Interscience Publishers, John Wiley &
Sons, New York, 1962.
the existence of corresponding endothermic peak (DH = 21.547 J/
[7] S.M. Sondhi, M. Johar, S. Rajvanshi, S.G. Datidar, R. Shukla, R. Raghubir, J.W.
Lown, Aust. J. Chem. 54 (2001) 169.
[8] M. Kidwai, S. Saxena, S. Rastogi, R. Venkataramanan, Curr. Med. Chem. Anti-
Infective Agents 2 (2004) 269.
[9] A. Dozal, H. Keyzer, H.K. Kim, W.W. Way, Int. J. Antimicrob. Agent 14 (2000)
261.
[10] J. Feng, H. Zhong, B.D. Xuebau, Zir. Kexu. 27 (6) (1991) 691.
[11] S.H. Bazzi, A. Mostafa, S.Y. AlQaradawi, E. Nour, J. Mol. Struct. 842 (2007) 1.
[12] A.A. Gouda, Talanta 80 (2009) 151.
gm) observed on DTA thermograms. The second major weight loss
(81.563%) is due to the decomposition of charge transfer complex
into its constituents. The PNP is less aromatic (less carbon content)
which is thus lost first. Therefore, this weight loss in CT complex is
attributed to the loss of PNP prior to Phen, as clearly mirrored the
first weight loss in TGA thermogram of PNP (Fig. 7). However, the
large difference in the
DH values, corresponding to loss of PNP
[13] C.S.P. Sastry, T.E. Divakar, U.V. Prasad, Talanta 33 (1986) 164.
[14] X. Lu, L. Wang, H. Liu, R. Wang, J. Chen, Talanta 73 (2007) 444.
[15] L. Feng, X. Liu, H. Chao, L. Ji, J. Inorg. Biochem. 101 (2007) 56.
[16] Q. Zhang, F. Zhang, W. Wang, X. Wang, J. Inorg. Biochem. 100 (2006) 1344.
[17] Francesco P. Fanizzi, M. Lanfranchi, G. Natile, A. Tiripicchiot, Inorg. Chem. 33
(1994) 3331.
which are estimated from DTA thermograms (Fig. 7B and C) is in
perfect agreement with bonding between the hydrogen of PNP
and the aromatic nitrogen of Phen in the complex, Table 4 presents
the most important thermal analysis data obtained from the TGA–
DTA thermograms. It is also interesting to note that the third deg-
radation step exhibited by charge transfer complex at around
499 °C is the final loss of the carbon residue and azocyanine as
well, resulting from the full decomposition of 1,10-phenanthroline
same as derivates of 1,10-phenanthroline [24,57]. This step can
also be observed in the TGA thermogram of donor (Fig. 7A) with
[18] N. Margiotta, P. Papadia, F. Lazzaro, M. Crucianelli, F. De Angelis, C. Pisano, L.
Vesci, G. Natile, J. Med. Chem. 48 (2005) 7821.
[19] B. Nasr, G. Abdellatif, J. Electrochem. 152 (2005) 113.
[20] A. Bebeselea, F. Manea, G. Burtica, L. Nagy, G. Nagy, Talanta 80 (2010) 1068.
[21] A.S. Gaballa, C. Wagner, S.M. Telab, J. Mol. Struct. 876 (2008) 301.
[22] N.S. Rao, G.B. Rao, Spectrochima. Acta Part A 46 (1990) 1107.
[23] M.S. Refat, H.M.A. Killa, Ivo Grabeher, Spectrochem. Acta Part A 68 (2007) 123.
[24] G. Li, W. Mo, H. Lin, H. Xiong, Appl. Catal. A: General 333 (2007) 172.
[25] J.M. Kruse, W.W. Brandt, Anal. Chem. 24 (8) (1952) 1306.
[26] W.L. Mo, H. Xiong, T. Li, X.C. Guo, G.X. Li, J. Mol. Catal. A Chem. 247 (2006) 227.
[27] I.M. Khan, A. Ahmad, Spectrochim. Acta Part A 73 (2009) 966.
[28] I.M. Khan, A. Ahmad, Spectrochim. Acta Part A 76 (2010) 315.
[29] I.M. Khan, A. Ahmad, Mol. Cryst. Liq. Cryst. 515 (2009) 154.
[30] H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.
[31] C. Zhou, J. Zhao, Y. Wu, C. Yin, P. Yang, J. Inorg. Biochem. 101 (2007) 10.
[32] R. Cruickshank, J.P. Duguid, B.P. Marmion, R.H.A. Awain, Medicinal
Microbiology, 12th ed., vol. 11, Churchill Livinggstone, London, 1995, p. 196.
[33] A.H. Collins (Ed.), Microbiology Method, second ed., Butterworth, London,
1976.
[34] Z.A. Siddiqi, M. Khalid, S. Kumar, M. Shahid, S. Noor, Euro. J. Med. Chem. 45
(2010) 264.
[35] A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Path. 45 (1966)
493.
[36] H. Duymus, M. Arslan, M. Kucukislamoglu, M. Zangin, Spectrochim. Acta Part A
65 (2006) 1120.
[37] M.S. Refat, S.A. Sadeek, H.M. Khater, Spectrochim. Acta Part A 64 (2006) 778.
[38] S. Bhattacharya, K. Ghosh, S. Chattopadhyay, Spectrochim. Acta Part A 65
(2006) 659.
slight difference in
DH values of the second step (Fig. 7A) and
the first step (Fig. 7C) corresponding to this weight loss which is
due to charge transfer complex formation.
4. Conclusions
The electron donor 1,10-phenanthroline reacts with the
p-
acceptor p-Nitrophenol in methanol at room temperature to form
the charge transfer complex. The forgoing discussion has shown
that Phen forms with PNP 1:1 molecular complex in which phen
was found to act as a n donor or a hydrogen acceptor. Further,
the TGA–DTA thermograms of the solid state CT complex of phen
and PNP supported for interaction between donor and acceptor
by some change in enthalpy (DH), degradation temperature and
weight loss for Phen, PNP and their CT complex. It is also observed
that FTIR and 1H NMR data provide evidence for the existence of
new bands of CTC with some changes and indicate a charge trans-
fer interaction associate with proton migration from acceptor to
the donor followed by intermolecular hydrogen bonding which is
assigned to N+AH–Oꢂ donor the formation of quaternary amine
species (+NH). The fluorescence spectrum studies carried out on
the interaction of the CT complex with DNA show that the CT com-
plex has well the ability of interaction with DNA, and CT complex
shows excellent antibacterial and antifungal activity against vari-
ous strains. Stern–Volmer quenching constant, Formation constant
and other mentioned physical parameters are estimated.
[39] Y.M. Issa, A.E. El-Kholy, A.M. Hindawey, R.M. Issa, J. Indian Chem. Soc. I, VII
(1980) 216.
[40] M. Gaber, H.A. Desouki, E.H. Hossani, Spectrosc. Lett. 25 (4) (1992) 463.
[41] D.A. Skoog, Principle of International Analysis, third ed., Saunder College
Publishing, New York, 1985 (Chapter 7).
[42] M.E. El-Zaria, Spectrochim. Acta Part A 69 (2008) 216.
[43] R.S. Mulliken, J. Chim. Phys. 61 (1964) 20.
[44] R. Abou-Ettah, A. El-Korashy, J. Phys. Chem. 76 (1972) 2405.
[45] E.H. El-Mossalamy, A.S. Amin, A.A. Khalil, Spectrochim. Acta Part A 58 (2002)
67.
[46] E.H. El-Mossalamy, J. Mol. Liq. 123 (2006) 118.
[47] Hu Y. Liu, L.X. Zhang, R.M. Zhao, S.S. Qu, J. Mol. Struct. 750 (2005) 174.
[48] L.F. Tan, Z.J. Chen, J.L. Shen, X.L. Liang, J. Chem. Sci 121 (2009) 397.
[49] N. Wang, L. Ye, B.Q. Zhao, J.X. Yu, J. Med. Biol. Res. 41 (2008) 589.
[50] Y.J. Hu, Y. Liu, X.S. Shen, X.Y. Fang, S.S. Qu, J. Mol. Struct. 738 (2005) 143.
[51] A. Papadopoulou, R.J. Green, R.A. Frazier, J. Agric. Food Chem. 53 (2005) 158.
[52] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.
Chem. Soc. 111 (1989) 3051.
[53] R.D. Kross, V.A. Fassel, J. Am. Chem. Soc. 79 (1957) 38.
[54] L.J. Ballamy, The Infrared Spectra of Complex Molecules, Chapman and Hall,
London, 1975. p. 290.
Acknowledgments
Authors thank to the Chairmen Department of Chemistry for
providing research facilities. One of the authors (I.M. Khan) grate-
fully acknowledges University Grant Commission, India for provid-
ing financial assistance.
[55] H.M.A. Salman, U.M. Rabie, E.M. Abd-Alla, Can. J. Anal. Spectrosc. 49 (2004) 1.
[56] R. Foster, Organic Charge-Transfer Complexes, Academic Press, London, 1969.
[57] R. Santi, A.M. Romano, R. Garrone, L. Abbondanza, M. Scalabrini, G. Bacchilega,
Macromol. Chem. Phys. 200 (1999) 25.