E
N. Lv et al.
Letter
Synlett
Gademann, K. Nat. Prod. Rep. 2010, 27, 1168. (f) Hibi, S.; Ueno,
K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.;
Hanada, T.; Yonaga, M. J. Med. Chem. 2012, 55, 10584. (g) Chen,
J.; Lu, M.-M.; Liu, B.; Chen, Z.; Li, Q.-B.; Tao, L.-J.; Hu, G.-Y.
Bioorg. Med. Chem. Lett. 2012, 22, 2300. (h) Scott, J. S.; Goldberg,
S. W.; Turnbull, A. V. J. Med. Chem. 2014, 57, 4466. (i) Neckles, C.;
Pschibul, A.; Lai, C.-T.; Hirschbeck, M.; Kuper, J.; Davoodi, S.;
Zou, J.; Liu, N.; Pan, P.; Shah, S.; Daryaee, F.; Bommineni, G. R.;
Lai, C.; Simmerling, C.; Kisker, C.; Tonge, P. J. Biochemistry 2016,
55, 2992.
(12) Fujii, M.; Nishimura, T.; Koshiba, T.; Yokoshima, S.; Fukuyama, T.
Org. Lett. 2013, 15, 232.
(13) In Fukuyama’s study, the reaction did not proceed at all in the
absence of LiCl, and the use of KCl instead of LiCl resulted in no
production of the 2-pyridone; for details, see ref. 12.
(14) 6-(Trifluoromethyl)-2-pyridones 3a–r; General Procedure
DBU (0.6 mmol, 89.7 μL) and the appropriate α,β-unsaturated
trifluoromethyl ketone 2 (0.2 mmol, 1.0 equiv) were added to a
mixture of 2-(phenylsulfinyl)acetamide (1; 0.4 mmol, 73.3 mg)
and LiCl (0.6 mmol, 25.4 mg) in MeCN (4 mL) at r.t., and the
mixture was stirred at r.t. for 4 h. When the trifluoromethyl
ketone 2 was completely consumed (TLC), AcOH (1 mmol, 57.2
μL) was added, and the resulting mixture was refluxed for 10 h,
then cooled to r.t. The reaction was then quenched with sat. aq
NaHCO3 and extracted with 10% MeOH–CHCl3 (×3). The com-
bined organic extracts were washed with brine, dried (Na2SO4),
filtered, and concentrated under reduced pressure. The crude
product was purified by column chromatography [silica gel,
CH2Cl2–MeOH (80:1)].
(3) For selected examples in ligands, see: (a) Wang, P.; Verma, P.;
Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.;
Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature 2017, 551, 489.
(b) Zhu, R.-Y.; Li, Z.-Q.; Park, H. S.; Senanayake, C. H.; Yu, J.-Q. J. Am.
Chem. Soc. 2018, 140, 3564. (c) Pati, T. K.; Debnath, S.; Kundu, M.;
Khamrai, U.; Maiti, D. K. Org. Lett. 2018, 20, 4062.
(4) For selected examples in biomaterials, see: Matsuo, K.;
Nishikawa, Y.; Masuda, M.; Hamachi, I. Angew. Chem. Int. Ed.
2018, 57, 659.
(5) (a) Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner, G. H. Tetrahe-
dron 1992, 48, 9111. (b) Nakao, Y.; Idei, H.; Kanyiva, K. S.;
Hiyama, T. J. Am. Chem. Soc. 2009, 131, 15996. (c) Hill, M. D.
Chem. Eur. J. 2010, 16, 12052. (d) Bull, J. A.; Mousseau, J. J.;
Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.
(e) Allais, C.; Grassot, J. M.; Rodriguez, J.; Constantieux, T. Chem.
Rev. 2014, 114, 10829. (f) Li, C.; Kähny, M.; Breit, B. Angew.
Chem. Int. Ed. 2014, 53, 13780. (g) Zhang, X.; Yang, Z.-P.; Huang,
L.; You, S.-L. Angew. Chem. Int. Ed. 2015, 54, 1873. (h) Diesel, J.;
Finogenova, A. M.; Cramer, N. J. Am. Chem. Soc. 2018, 140, 4489.
(6) (a) Schlosser, M. Angew. Chem. Int. Ed. 2006, 45, 5432.
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem.
Soc. Rev. 2008, 37, 320. (d) O’Hagan, D. Chem. Soc. Rev. 2008, 37,
308. (e) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. (f) Nie,
J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
(g) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115,
731.
(7) For selected reviews, see: (a) Zhu, S.; Song, L.; Jin, G.; Dai, B.;
Hao, J. Curr. Org. Chem. 2009, 13, 1015. (b) Tomashenko, O. A.;
Grushin, V. V. Chem. Rev. 2011, 111, 4475. (c) Barata-Vallejo, S.;
Lantaño, B.; Postigo, A. Chem. Eur. J. 2014, 20, 16806. (d) Alonso,
C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem.
Rev. 2015, 115, 1847. (e) Li, S.; Ma, J.-A. Chem. Soc. Rev. 2015, 44,
7439. (f) Meyer, F. Chem. Commun. 2016, 52, 3077. (g) Das, P.;
Tokunaga, E.; Shibata, N. Tetrahedron Lett. 2017, 58, 4803.
(h) Feraldi-Xypolia, A.; Gomez Pardo, D.; Cossy, J. Eur. J. Org.
Chem. 2018, 3541.
(8) (a) Pitman-Dunn, S. P. J. Heterocycl. Chem. 1969, 6, 223.
(b) Kvita, V. Synthesis 1991, 883. (c) Kumar, G. S.; Kurumurthy,
C.; Rao, P. S.; Veeraswamy, B.; Rao, P. S.; Narsaiah, B. J. Hetero-
cycl. Chem. 2015, 52, 75. (d) Abdellattif, M. H.; Maghrabi, I. A.;
Areef, M. M. H.; ElDeab, H. A.; Mouneir, S. M.; Belal, A. J. Adv.
Chem. 2016, 12, 4351; DOI: 10.24297/jac.v12i4.2175.
(9) Zhang, H.-H.; Shen, W.; Lu, L. Tetrahedron Lett. 2018, 59, 1042.
(10) Bai, D.; Wang, X.; Zheng, G.; Li, X. Angew. Chem. Int. Ed. 2018, 57,
6633.
(11) There is only one report on the synthesis of 6-(trifluoromethyl)-
2-pyridones; this gives only one example, and requires two syn-
thetic steps: Yeh, P.-P.; Daniels, D. S. B.; Cordes, D. B.; Slawin, A.
M. Z.; Smith, A. D. Org. Lett. 2014, 16, 964.
4-Phenyl-6-(trifluoromethyl)pyridin-2(1H)-one (3a)
White solid; yield: 77.5 mg (81.0%); mp 198.4–200.6 °C. 1H
NMR (400 MHz, DMSO-d6): δ = 11.83 (s, 1 H), 7.86–7.81 (m, 2
H), 7.61 (s, 1 H), 7.51 (dd, J = 5.8, 4.6 Hz, 3 H), 7.21 (s, 1 H). 19F
NMR (376 MHz, DMSO-d6): δ = –66.65 (s). 13C NMR (101 MHz,
DMSO-d6): δ = 164.9, 152.2, 144.8 (q, JC–F = 34.6 Hz), 136.2,
129.8, 129.2, 127.1, 121.5 (q, JC–F = 272.4 Hz), 110.8, 110.3.
4-(2-Tolyl)-6-(trifluoromethyl)pyridin-2(1H)-one (3b)
White solid; yield: 81.0 mg (80.0%); mp 98.7–99.9 °C. IR (neat):
1666, 1632, 1550, 1444, 1403, 1348, 1174, 1133, 965, 945, 840
1
cm–1. H NMR (400 MHz, DMSO-d6): δ = 11.85 (s, 1 H), 7.27 (d,
J = 25.6 Hz, 5 H), 6.86 (s, 1 H), 2.23 (s, 3 H). 19F NMR (377 MHz,
DMSO-d6): δ = –66.78 (s). 13C NMR (101 MHz, DMSO-d6): δ =
164.4 (s), 153.8 (s), 144.1 (q, JC–F = 33.82 Hz), 137.8 (s), 134.7 (s),
130.7 (s), 129.0 (s), 128.8 (s), 126.2 (s), 121.5 (q, JC–F = 272.33
Hz), 113.9 (s), 113.0 (s), 19.8 (s). HRMS (ESI): m/z [M + H]+ calcd
for C13H11F3NO: 254.0789; found: 254.0793.
(15) (a) Tsuchida, N.; Yamabe, S. J. Phys. Chem. A 2005, 109, 1974.
(b) Mertens, M. D.; Pietsch, M.; Schakenburg, G.; Gütschow, M.
J. Org. Chem. 2013, 78, 8966. (c) Feng, B.; Li, Y.; Li, H.; Zhang,
X.; Xie, H.; Cao, H.; Yu, L.; Xu, Q. J. Org. Chem. 2018, 83, 6769.
(16) (a) Cacchi, S.; Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron
Lett. 1986, 27, 5541. (b) Yoshida, Y.; Mohri, K.; Isobe, K.; Itoh, T.;
Yamamoto, K. J. Org. Chem. 2009, 74, 6010.
(17) (a) Bhayana, B.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2009, 11,
3954. (b) Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. Org. Lett.
2009, 11, 4886.
(18) Volochnyuk, D. M.; Pushechnikov, A. O.; Krotko, D. G.;
Sibgatulin, D. A.; Kovalyova, S. A.; Tolmachev, A. A. Synthesis
2003, 1531.
(19) Kumar, G. S.; Dev, G. J.; Kumar, N. R.; Swaroop, D. K.; Chandra, Y.
P.; Kumar, C. G.; Narsaiah, B. Chem. Pharm. Bull. 2015, 63, 584.
(20) (a) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(b) Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.;
Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.;
Prachayasittikul, V. Mini-Rev. Med. Chem. 2017, 17, 869.
(c) Burriss, A.; Edmunds, A. J. F.; Emery, D.; Hall, R. G.; Jacob, O.;
Schaetzer, J. Pest Manag. Sci. 2018, 74, 1228.
(21) Stark, D. G.; Morrill, L. C.; Yeh, P.-P.; Slawin, A. M. Z.; O’Riordan,
T. J. C.; Smith, A. D. Angew. Chem. Int. Ed. 2013, 52, 11642.
(22) The presence of a double bond at the α-position of the alcohol
cannot be ruled out at this stage.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E