5366
J. Am. Chem. Soc. 2001, 123, 5366-5367
formation of dihydropyran 1, whereas treatment with 5% Et3N/
MeOH gave acetal 2 that we used to monitor the syn/anti
diasteromer ratio which, by reason of oxonium ion formation, is
an indicator of the Lewis acidity of the catalyst (high activity f
isomerization).
A comparison of results from the use of a broad selection of
chiral dirhodium(II) catalysts is presented in Table 1. Both chiral
carboxamidate-ligated (3-6) and carboxylate-ligated (7) dirhod-
ium complexes were employed. Dirhodium(II) complexes with
A New Class of Chiral Lewis Acid Catalysts for
Highly Enantioselective Hetero-Diels-Alder
Reactions: Exceptionally High Turnover Numbers
from Dirhodium(II) Carboxamidates
Michael P. Doyle,* Iain M. Phillips, and Wenhao Hu
Department of Chemistry, The UniVersity of Arizona
Tucson, Arizona 85721
ReceiVed February 19, 2001
ReVised Manuscript ReceiVed April 11, 2001
The hetero-Diels-Alder reactions of carbonyl compounds with
conjugated dienes is an important methodology for the synthesis
of dihydropyrans.1 Accelerated by Lewis acids, these reactions
have been a veritable training ground for evaluation of the
effectiveness of chiral catalysts as Lewis acids for enantioselective
transformations.2-8 Although selectivities of 99% ee have been
achieved in select cases, a major drawback of this methodology
has been its high catalyst loading [substrate/catalyst (S/C) usually
e50]. We have previously developed chiral dirhodium(II) car-
boxamidate catalysts for effective and efficient metal carbene
transformations,3-11 and we now report a major extension of their
applications to hetero-Diels-Alder reactions where their opera-
tions allow substrate-to-catalyst loadings of up to 10,000.
To ascertain the viability of the approach with dirhodium(II)
catalysts, we first employed rhodium acetate at 1.0 mol % for
the cycloaddition of Danishefsky’s diene with an equivalent
amount of p-nitrobenzaldehyde (eq 1), and this reaction was
complete within 6 h at room temperature in CH2Cl2. Treatment
of the reaction solution with trifluoroacetic acid resulted in the
(1) Boger, D. L.; Weinreb, S. H. Hetero-Diels-Alder Methodology in
Organic Synthesis; Academic Press: New York, 1987. Nicolaou, K. C.;
Sorensen, E. J. Classics in Total Synthesis: Targets, Strategies, Methods;
VCH: New York, 1996. Waldmann, H. Synthesis 1994, 535. Tietze, L. F.;
Kettschau, G. Top. Curr. Chem. 1997, 190, 1. Tietze, L. F. Curr. Org. Chem.
1998, 2, 19.
(2) Jorgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558.
(3) Maruoka, K. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.;
Wiley-VCH: New York, 2000; Chapter 8A.
(4) Chiral aluminum and boron complexes: (a) Maruoka, K.; Itoh, T.;
Shirasaka, T.; Yamamoto, H. J. Am. Chem. Soc. 1988, 110, 310. (b) Maruoka,
K.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 789. (c) Corey, E. J.;
Guzman-Perez, A.; Loh, T.-P. J. Am. Chem. Soc. 1994, 116, 3611. (e)
Simonsen, K. B.; Svenstrup, N.; Robertson, M.; Jorgensen, K. A. Chem. Eur.
J. 2000, 6, 123.
(5) Chiral lanthanide complexes: (a) Bednarski, M.; Danishefsky, S. J.
Am. Chem. Soc. 1983, 105, 6968 and 1986, 108, 7060. (b) Hanamoto, T.;
Furuno, H.; Sugimoto, Y.; Inanaga, J. Synlett 1997, 79. (c) Furuno, H.;
Hanamoto, T.; Sugimoto, Y.; Inanaga, J. Org. Lett. 2000, 2, 49.
(6) Chiral titanium complexes: (a) Mikami, K.; Matsukawa, S. J. Am.
Chem. Soc. 1993, 115, 7039. (b) Keck, G. E.; Krishnamurthy, D. J. Am. Chem.
Soc. 1995, 117, 2363. (c) Duthaler, R. O. Angew. Chem., Int. Ed. Engl. 1997,
36, 43. (d) Wang, B.; Feng, X.; Cui, X.; Liu, H.; Jiang, Y. J. Chem. Soc.,
Chem. Commun. 2000, 1605.
the new fluorinated MEPY (3b) and IBAZ (5a) or CHAZ (5b)
ligands12 were expected to provide enhanced Lewis acid activity
to dirhodium(II) even beyond that from representative azetidinone
ligands13 or from chiral carboxylates.14 However, the highest level
of enantiocontrol was achieved with the less Lewis acidic Rh2-
(4S-MPPIM)4, which in metal carbene reactions was considered
(9) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds; John Wiley & Sons: New York,
1998.
(7) Chiral chromium complexes: (a) Schaus, S. E.; Brånalt, J.; Jacobsen,
E. N. J. Org. Chem. 1998, 63, 403. (b) Dossetter, A. G.; Jamison, T. F.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 1999, 38, 2398.
(8) Chiral copper complexes: (a) Johnson, J. S.; Evans, D. A. Acc. Chem.
Res. 2000, 33, 325. (b) Jorgensen, K. A.; Johannsen, M.; Yao, S.; Audrain,
H.; Thorhauge, J. Acc. Chem. Res. 1999, 32, 605. (c) Pfaltz, A. Acc. Chem.
Res. 1993, 26, 339. (d) Evans, D. A.; Johnson, J. S.; Olhava, E. J. J. Am.
Chem. Soc. 2000, 122, 1635.
(10) Doyle, M. P.; Forbes, D. C. Chem. ReV. 1998, 98, 911.
(11) Doyle, M. P. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I.,
Ed.; Wiley-VCH: New York, 2000; Chapter 5.
(12) Doyle M. P.; Hu, W.; Phillips, I. M.; Moody, C. J.; Pepper, A. G.
AdV. Synth. Catal. 2001, 343, 112.
(13) Doyle, M. P.; Davies, S. B.; Hu, W. Org. Lett. 2000, 2, 1145.
(14) Davies, H. M. L. Eur. J. Org. Chem. 1999, 2459. Davies, H. M. L.
Curr. Org. Chem. 1998, 2, 463.
10.1021/ja015692l CCC: $20.00 © 2001 American Chemical Society
Published on Web 05/10/2001