N. Nakashima et al.
10234; g) M. ꢄlvaro, P. Atienzar, J. L. Bourdelande, H. Garcꢅa,
Chem. Phys. Lett. 2004, 384, 119; h) L. S. Fifield, L. R. Dalton, R. S.
Addleman, R. A. Galhotra, M. H. Engelhard, G. E. Fryxell, C. L.
Aardahl, J. Phys. Chem. B 2004, 108, 8737; i) A. B. Artyukhin, O.
Bakajin, P. Stroeve, A. Noy, Langmuir 2004, 20, 1442.
stead, the phenanthlyl and pyrenyl groups play an important
role in the solubilization. Pyrene ammonium (4), an amphi-
phile that does not form micelles, acted as an excellent solu-
bilizer for both the raw-SWNTs and p-SWNTs. Aqueous
solutions of SWNTs/4 exhibited interesting fluorescence
properties. The efficient fluorescence quenching of the
pyrene chromophore suggested energy transfer from the
pyrene group chemisorbed on the SWNTs to the SWNTs.
The most interesting feature is the selective dissolution of
SWNTs by 4, indicated bythe near-IR photoluminescence
measurements that revealed that the aqueous SWNTs/4 pos-
sesses (7,6), (9,5), and (12,1) indices. This means that aque-
ous solution of 4 has a tendencyto dissolve semiconducting
SWNTs with diameters in the range of 0.89–1.0 nm. These
were larger than those of aqueous micelles of SDS and
HTAB (diameter range of 0.76–0.97 nm). This fine discrimi-
nation in the diameters of the SWNTs is of interest in the
design of nanotube solubilizers that recognize a single nano-
tube chiral index, as the synthesis of SWNTs with a single
chiral index is presentlydifficult, and also for their potential
applications in manyfields of science and technology.
[6] a) J. Zhang, J.-K. Lee, Y. Wu, R. W. Murray, Nano Lett. 2003, 3, 403;
b) T. G. Hedderman, S. M. Keogh, G. Chambers, H. J. Byrne, J.
Phys. Chem. B 2004, 108, 18860.
[7] a) D. M. Guldi, G. N. A. Rahman, J. Ramey, M. Marcaccio, D. Pao-
lucci, F. Paolucci, S. Qin, W. T. Ford, D. Balbinot, N. Jux, N. Tagma-
tarchis, M. Prato, Chem. Commun. 2004, 2004; b) D. M. Guldi, H.
Taieb, G. M. A. Rahman, N. Tagmatarchis, M. Prato, Adv. Mater.
2005, 17, 871; c) D. Baskaran, J. W. Mays, X. P. Zhang, M. S. Bratch-
er, J. Am. Chem. Soc. 2005, 127, 6916; d) A. Satake, Y. Miyajima, Y.
Kobuke, Chem. Mater. 2005, 17, 716.
[8] a) V. Krstic, G. S. Duesberg, J. Muster, M. Burghard, S. Roth, Chem.
Mater. 1998, 10, 2338; b) N. Nakashima, H. Kobae, T. Sagara, H.
Murakami, ChemPhysChem 2002, 3, 456; c) M. J. OꢆConnell, S. M.
Bachio, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz,
K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge,
R. B. Weisman, R. E. Smalley, Science 2002, 297, 593; d) S. M. Bach-
ilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weis-
man, Science 2002, 298, 2361; e) M. F. Islam, E. Rojas, D. M. Bergey,
A. T. Johnson, A. G. Yodh, Nano Lett. 2003, 3, 269; f) V. C. Moore,
M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, Nano Lett.
2003, 3, 1379; g) R. B. Weisman, S. M. Bachilo, Nano Lett. 2003, 3,
1235; h) C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, C.
Mioskowski, Science 2003, 300, 775; i) K. Yurekli, C. A. Mitchell, R.
Krishnamoorti, J. Am. Chem. Soc. 2004, 126, 9902; j) M. S. Strano,
C. B. Huffman, V. C. Moore, M. J. OꢆConnell, E. H. Haroz, J. Hub-
bard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R. H. Hauge,
R. E. Smalley, J. Phys. Chem. B 2003, 107, 6979.
Acknowledgements
We thank Prof. H. Furuta of Kyushu University for the use of
a
HORIBA SPEX Fluorolog-3-NIR spectrofluorometer and Prof. S. Mar-
uyama and Mr. Y. Miyauchi of The University of Tokyo for their techni-
cal assistance in the preparation of the contour plots of the photolumi-
nescence data. This work was supported byGrants-in-Aid from the Japa-
nese Ministryof Education, Science, Sports, and Culture.
[9] a) D. M. Guldi, G. M. A. Rahman, N. Jux, N. Tagmatarchis, M. Prao,
Angew. Chem. 2004, 116, 5642; Angew. Chem. Int. Ed. 2004, 43,
5526; b) D. M. Guldi, G. M.A. Rahman, N. Jux, D. Balbinot, N. Tag-
matarchis, M. Prato, Chem. Commun. 2005, 2038.
[10] a) D. M. Guldi, G. M.A. Rahman, M. Prato, N. Jux, S. Qin, W. Ford,
Angew. Chem. 2005, 117, 2051; Angew. Chem. Int. Ed. 2005, 44,
2015; b) G. M. A. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L.
Schenetti, L. Vaccari, M. Prato, J. Am. Chem. Soc. 2005, 127, 10051.
[11] H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K. A. S. Fernando, S.
Kumar, L. F. Allard, Y.-P. Sun, J. Am. Chem. Soc. 2004, 126, 1014.
[12] H. Paloniemi, T. ꢇꢈriralo, T. Laiho, H. Like, N. Kocharova, K. Haa-
pakka, F. Terzi, R. Seeber, J. Lukkari, J. Phys. Chem. B 2005, 109,
8634.
[1] S. Iijima, Nature 1991, 354, 56.
[2] a) Carbon Nanotubes and Related Structures (Ed.: P. J. F. Harris),
Cambridge UniversityPress, Cambridge, 1999; b) The Science and
Technology of Carbon Nanotubes (Eds.: K. Tanaka, T. Yamabe, K.
Fukui), Elsevier, Oxford, 1999; c) S. Niyogi, M. A. Hamon, H. Hu,
B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, R. C. Haddon, Acc.
Chem. Res. 2002, 35, 1105; d) A. Hirsch, Angew. Chem. 2002, 114,
1933; Angew. Chem. Int. Ed. 2002, 41, 1853; e) S. Banerjee, M. G. C.
Kahn, S. S. Wong, Chem. Eur. J. 2003, 9, 1893; f) D. Tasis, N. Tagma-
tarchis, V. Georgakilas, M. Prato, Chem. Eur. J. 2003, 9, 4000;
g) Carbon Nanotubes (Eds.: S. Reich, C. Thomsen, J. Maultzsch),
Wiley-VCH, Berlin, 2004.
[13] I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Broni-
kowski, J. L. Margrave, R. E. Smalley, R. H. Hauge, J. Phys. Chem.
B 2001, 105, 8297.
[14] T. Ando, J. Phys. Soc. Jpn. 1997, 66, 1066.
[15] a) Photophysics of Aromatic Molecules (Ed.: J. B. Birks), John
Wiley, New York, 1970; b) Principles of Fluorescence Spectroscopy
(Ed.: J. R. Lakowicz), Kluwer Academic/Plenum, 1999.
[16] a) L. Qu, R. B. Martin, W. Huang, K. Fu, D. Zweifel, Y. Lin, Y.-P.
Sun, C. E. Bunker, B. A. Harruff, J. R. Gord, L. F. Allard, J. Chem.
Phys. 2002, 117, 8089; b) R. B. Martin, L. Qu, Y. Lin, B. A. Harruff,
C. E. Bunker, J. R. Gord, L. F. Allard, Y.-P. Sun, J. Phys. Chem. B
2004, 108, 11447.
[17] H. Li, R. B. Martin, B. A. Harruff, R. A. Carino, L. F. Allrd, Y.-P.
Sun, Adv. Mater. 2004, 16, 896.
[18] Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama,
Chem. Phys. Lett. 2004, 387, 198.
[3] N. Nakashima, Int. J. Nanosci. 2005, 4, 117.
[4] a) N. Nakashima, Y. Tomonari, H. Murakami, Chem. Lett. 2002,
638; b) N. Nakashima, S. Okuzono, Y. Tomonari, H. Murakami,
Trans. Mater. Res. Soc. Jpn. 2004, 29, 525; c) H. Murakami, T.
Nomura, N. Nakashima, Chem. Phys. Lett. 2003, 378, 481; d) N. Na-
kashima, S. Okuzono, H. Murakami, T. Nakai, K. Yoshikawa, Chem.
Lett. 2003, 32, 456; e) N. Nakashima, Y. Tanaka, Y. Tomonari, H.
Murakami, H. Kataura, T. Sakaue, K. Yoshikawa, J. Phys. Chem. B
2005, 109, 13076.
[5] a) R. J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 2001,
123, 3838; b) H. Xin, A. T. Woolley, J. Am. Chem. Soc. 2003, 125,
8710; c) F. J. Gꢁmez, R. J. Chen, D. Wang, R. M. Waymouth, H.
Dai, Chem. Commun. 2003, 190; d) P. Petrov, F. Stassin, C. Pag-
noulle, R. Jꢂrꢃme, Chem. Commun. 2003, 2904; e) L. Liu, T. Wang,
J. Li, Z.-X. Guo, L. Dai, D. Zhang, D. Zhu, Chem. Phys. Lett. 2003,
367, 747; f) K. A. S. Fernando, Y. Lin, W. Wang, S. Kumar, B. Zhou,
S.-Y. Xie, L. T. Cureton, Y.-P. Sun, J. Am. Chem. Soc. 2004, 126,
[19] a) J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303; b) T. Fu-
kushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N.
Ishii, T. Aida, Science 2003, 300, 2072.
Received: September 24, 2005
Published online: March 21, 2006
4034
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 4027 – 4034