Please do not adjust margins
ChemComm
Page 5 of 5
DOI: 10.1039/C6CC06019F
COMMUNICATION
Journal Name
9
(a) C. Wang, T. Zhang, W. Lin. Chem. Rev. 2012, 112, 1084; (b) Y.
Cui, Y. Yue, G. Qian, B. Chen. Chem. Rev. 2012, 112, 1126.
conversions after 48h with 72ꢀ79% enantioselectivity (Table 4). The
electronic nature of benzaldehyde substrates is crucial to the reaction
obviously, and only species bearing electronꢀwithdrawing groups (ꢀF,
ꢀCl, ꢀBr, ꢀNO2) could be transferred efficiently, but substituent at
different positions of the phenyl groups had little influence on the
conversion and selectivity. The benzaldehyde with large steric
hindrance, such as G0 group, could not be a suitable substrate for
HDA transformation, and only a very small amount of product (<5%
conversion) was detected (Table 4, entry 7). Meanwhile, the
corresponding homogeneous catalyst still afforded 88% conversion,
indicating that the bulky substrate could not diffuse into the MOF
catalyst efficiently and the heterogeneous catalysis indeed occurred
inside the pores of MOF.
10 (a) R. E. Morris, X. Bu. Nat. Chem. 2010, 2, 353; (b) S.ꢀY. Zhang,
D. Guo Li, H. Zhang, W. Shi, P. Cheng, L. Zaworotko. M. J.
Wojtas. J. Am. Chem. Soc. 2015, 137, 15406.
11 (a) M. Yoon, R. Srirambalaji, K. Kim. Chem. Rev. 2012, 112, 1196;
(b) L. Ma, C. Abney, W. Lin. Chem. Soc. Rev. 2009, 38, 1248.
12 (a) S. H. Cho, B. Q. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrechtꢀ
Schmitt. Chem. Commun. 2006, 2563; (b) F. Song, C. Wang, J. M.
Falkowski, L. Ma, W. Lin. J. Am. Chem. Soc. 2010, 132, 15390; (c)
J. M. Falkowski, C. Wang, S. Liu, W. Lin. Angew. Chem. Int. Ed.
2011, 50, 8674; (d) C. Zhu, G. Yuan, X. Chen, Z. Yang, Y. Cui. J.
Am. Chem. Soc. 2012, 134, 8058; (e) Z. Yang, C. Zhu, Z. Li, Y. Liu,
G. Liu, Y. Cui. Chem. Commun. 2014, 50, 8775; (f) W. Xi, Y. Liu,
Q. Xia, Z. Li, Y. Cui. Chem. Eur. J. 2015, 21, 12581.
MOF 1 displayed obviously higher enantioselectivity than the
homogeneous analogue in both DA and HDA reaction, further
highlighting the unique confinement effect of MOF catalysis, which
can optimize the environment around the active sites in asymmetric
chemical processes. In addition, the turnover number (TON) values
for all the above four reactions are about 3.1ꢀ4 times of those in
homogeneous cases. The MOF catalyst can be recycled and reused
with negligible loss of efficiency and enantioselectivity. For instance,
the conversion/ee's of aminolysis of benzaldehyde for four
consecutive runs are 92/81%, 90/81%, 90/77%, 87/77%, respectively.
PXRD showed the recovered solid remained crystalline and
structurally intact. XPS measurement showed the recovered
chromium catalyst retained +3 oxidation state.
13 (a) L. Ma, J. M. Falkowski, C. Abney, W. Lin. Nat. Chem. 2010,
2
,
,
838; (b) K. Mo, Y. Yang, Y. Cui. J. Am. Chem. Soc. 2014, 136
1746; (c) K. S. Jeong, Y. B. Go, S. Shin, S. M. Lee, J. Kim, O. M.
Yaghi, N. Jeong. Chem. Sci. 2011, , 877; (d) J. M. Falkowski, T.
2
Sawano, T. Zhang, G. Tsun, Y. Chen, J. V. Lockard, W. Lin. J. Am.
Chem. Soc. 2014, 136, 5213; (e) Sawano, T. N. C. Thacker, Z. Lin,
A. R. McIsaac, W. Lin. J. Am. Chem. Soc. 2015, 137, 12241.
14 (a) J. F. Larrow, E. N. Jacobsen. Top. Organomet. Chem. 2004,
123; (b) P. G. Cozzi. Chem. Soc. Rev. 2004, 33, 410.
15 (a) S. E. Schaus, J. Brånalt, E. N. Jacobsen. J. Org. Chem. 1998, 63
6,
,
,
403; (b) A. G. Doyle, E. N. Jacobsen. J. Am. Chem. Soc. 2005, 127
62; (c) G. E. Hutson, Y. E. Türkmen, V. H. Rawal. J. Am. Chem.
Soc. 2013, 135, 4988; (d) G. Bartoli, M. Bosco, A. Carlone, M.
Locatelli, M. Massaccesi, P. Melchiorre, L. Sambri. Org. Lett. 2004,
In summary, we have demonstrated the construction of a porous
Cr(salen)ꢀMOF and explored its universality in a series of important
asymmetric organic reactions. Our work not only advances MOFs as
a new type of versatile catalyst for general application in asymmetric
catalysis, but also provides a new perspective for heterogeneous
asymmetric catalysis in industry. Moreover, our work also expands
the scope of diverse and tailored porous framework materials,
promising potential breakthrough in practical application of MOFꢀ
based catalysts in heterogeneous access to optical active chemicals.
This work was supported by NSFCꢀ21371119, 21431004,
21401128 and 21522104, “973” Program (2014CB932102 and
2012CB8217), Shanghai “Eastern Scholar” Program and SSTCꢀ
14YF1401300.
6
, 2173; (e) Y. Huang, T. Iwama, V. H. Rawal. Org. Lett. 2002, 4,
1163.
16 A. L. Spek. J. Appl. Crystallogr. 2003, 36, 7.
17 J. Chun, S. Kang, N. Kang, S. M. Lee, H. J. Kim, S. U. Son. J.
Mater. Chem. A. 2013, , 5517.
18 N. Shimada, C. Stewart, M. A. Tius. Tetrahedron. 2011, 67, 5851.
19 R. I. Kureshy, K. J. Prathap, S. Agrawal, N.ꢀH. Khan, S. H. R. Abdi,
R. V. Jasra. Eur. J. Org. Chem. 2008, 3118.
1
20 M. Juhl, D. Tanner. Chem. Soc. Rev. 2009, 38, 2983.
Notes and references
1
H.ꢀU. Blaser, H.ꢀJ. Federsel. Asymmetric Catalysis on Industrial
Scale: Challenges, Approaches and Solutions, E., Eds.; WileyꢀVCH:
Weinheim, 2004.
2
R. A. Sheldon, I. W. C. Arends, U. Hanefeld. Green Chemistry and
Catalysis; WileyꢀVCH: Weinheim, 2007.
3
4
Z. Wang, G. Chen, K. Ding. Chem. Rev. 2009, 109, 322.
(a) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi.
Science. 2013, 341, 123044; (b). T. R. Cook, Y.ꢀR. Zheng, P. J.
Stang. Chem. Rev. 2013, 113, 734.
5
(a) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D.
Bloch, Z. R. Herm, T.ꢀH. Bae, J. R. Long. Chem. Rev. 2012, 112
724; (b) M. P. Suh, H. J. Park, T. K. Prasad, D.ꢀW. Lim. Chem. Rev
2012, 112, 782.
,
.
6
7
8
(a) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V.
Duyne, J. T. Hupp. Chem. Rev. 2012, 112, 1105; (b) Z. Hu, B. J.
Deibert, J. Li. Chem. Soc. Rev. 2014, 43, 5815.
(a) A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, F.
Verpoort. Chem. Soc. Rev. 2015, 44, 6804; (b) J. Gascon, A. Corma,
F. Kapteijn, F. X. Llabrés i Xamena. ACS Catal. 2014,
4, 361.
J.ꢀR. Li, J. Sculley, H.ꢀC. Zhou. Chem. Rev. 2012, 112, 869.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins