G. Lin et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2887–2890
2889
both enzymes in a similar way for substituent steric
effect of cage amines. Positive s values indicate that
bulky substituted cage amines fit well into the entrance
of active site gorge, PAS, through the well known p–p
interaction between cage amine phenyl group and W278
of AChE or Y332 of BChE (Fig. 5).8,12 This interaction
for AChE is slightly better than that for BChE probably
because tryptophan provides more p electrons than
tyrosine.
Since the ꢀlogKi values do not correlate with Hammett
substituent constant, s, electronic effects of cage amine
substituents are unimportant. Thus, interactions
between cage amines and PAS are mostly steric effects.
On the other hand, the ionic interaction between the
aspartate anion of PAS (D72 of AChE or D70 of
BChE)13 and the protonated quaternary amine cation
may occur (Fig. 5).
Figure 3. ꢀg of cage amines 2 and 3.
Overall, the relationship between cholinesterases
and cage amines 1–4 mimics that between bottles and
stoppers.
Acknowledgements
We thank the National Science Council of Taiwan for
financial support.
References andNotes
1. Giacobini, E. In Alzheimer’s Disease: Molecular Biology to
Theraphy, Becker, R., Giacobini, E. Eds.;Birkhauser: Boston,
1997.
2. Soreq, H.;Zakut, H. Human Cholinesterases and Anti-
cholinesterases;Academic: New York, 1983.
Figure 4. Correlations of the ꢀlogKi values of AChE and BChE inhib-
itions by cage amines 1–4 against ꢀg. Squares and circles are the
ꢀlogKi values of AChE and BChE, respectively. Straight lines are
linear least-squares fit to eq 1 and give s=3.4ꢁ0.3 and s=3.2ꢁ0.7 for
AChE (dashed line) and BChE (solid line) inhibitions, respectively.
3. Atack, J. R.;Yu, Q.-S.;Soncrant, T. T.;Brossi, A.
Pharmacol. Exp. Ther. 1989, 249, 194.
J.
4. Craig, N.;Pei, X. F.;Soncrant, T. T.;Ingram, D. K.;
Brossi, A. Med. Res. Rev. 1995, 15, 3.
5. Nielsen, T.;Nissan, R. A.;Vanderah, D. J.;Coon, C. L. J.
Org. Chem. 1990, 55, 1459.
6. Sussman, J. L.;Harel, M.;Frolow, F.;Oefner, C.;Gold-
man, A.;Toker, L.;Silman, I. Science 1991, 253, 872.
7. Harel, M.;Schalk, I.;Ehret-Sabatier, L.;Bouet, F.;Goeld-
ner, M.;Hirth, L.;Axelsen, P. H.;Silman, I.;Sussman, J. L.
Proc. Natl. Acad, Sci. USA 1993, 90, 9031.
8. Harel, M.;Quinn, D. M.;Nair, H. K.;Silman, I.;Sussman,
J. L. J. Am. Chem. Soc. 1996, 118, 2340.
9. Bartolucci, C.;Perola, E.;Cellai, L.;Brufani, M.;Lamba,
D. Biochemistry 1999, 38, 5714.
10. Bourne, Y.;Grassi, J.;Bougis, P. E.;Marchot, P. J. Biol.
Chem. 1999, 274, 30370.
11. Pang, Y.-P.;Quiram, P.;Jalacie, T.;Hong, F.;Brimijoin,
S. J. Biol. Chem. 1996, 271, 23646.
12. Saxena, A.;Redman, A. M. G.;Jiang, X.;Lockridge, O.;
Doctor, B. P. Biochemistry 1997, 36, 14642.
13. Masson, P.;Xie, W.;Froment, M.-T.;Levitsky, V.;For-
tier, P.-L.;Albaret, C.;Lockridge, O. Biochim. Biophys. Acta
1999, 1433, 281.
Figure 5. Stopper-bottle type interaction between cage amines 1–4
(stopper) and AChE (bottle). PAS is located at the entrance of active
site gorge and mimics the bottle mouth. The p–p interaction between
W2786,7 and cage amine phenyl group and the ionic interaction
between D72 anion6,7 and the protonated quaternary amine cation of
cage amine are proposed.