Page 3 of 3
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
COMMUNICATION
Notes and references
DOI: 10.1039/C6OB00187D
R
O
1
(a) R. Larock, In Comprehensive Organic Transformations,
R
OPiv
K2CO3(20 mol%)
O
NH2
2nd ed.; Wiley-VCH: New York, 1999. (b) J. Otera, In
Esterification; Wiley-VCH: Weinheim, 2003. (c) J. Otera, J.
Nishikido, Esterification; Wiley-VCH: Weinheim, 2010.
Some reviews on the transesterification, see: (a) G. A. Grasa,
R. Singh, S. P. Nolan, Synthesis. 2004, 971. (b) J. Otera, Acc.
Chem. Res. 2004, 37, 288.
+
toluene, 120℃
O
1a, 1b
2
3
2
3
Cl
O
O
O
O
3ab 81%
O
Some selected examples about the transesterification
between esters and alcohols in the presence of strong acids
or bases, see: (a) J. Otera, N. Danoh, H. Nozaki, J. Org. Chem.
1991, 56, 5307. (b) B. C. Ranu, P. Dutta, A. Sarkar, J. Org.
Chem. 1998, 63, 6207. (c) P. Ilankumaran, J. G. Verkade, J.
Org. Chem. 1999, 64, 3086. (d) P. Ilankumaran, J. G. Verkade,
J. Org. Chem. 1999, 64, 9063.
O
3ad 80% (68% b
)
3ac 82%
N
Br
O
O
O
O
O
O
3af 0%
3bg 0%
3be 72%
4
5
M.-H. Lin, T. V. RajanBabu, Org. Lett. 2000, 2, 997.
Scheme 2. Scope of the primary amides. Yields of isolated products are
given. b The naphthalen-2-yl picolinate was used as the substrate.
(a) T. Iwasaki, Y. Maegawa, Y. Hayashi, T. Ohshima, K.
Mashima, J. Org. Chem. 2008, 73, 5147. (b) T. Ohshima, T.
Iwasaki, Y. Maegawa, A. Yoshiyama, K. Mashima, J. Am.
Chem. Soc. 2008, 130, 2944. (c) T. Iwasaki, K. Agura, Y.
Maegawa, Y. Hayashi, T. Ohshima, K. Mashima, Chem. Eur. J.
2010, 16, 11567. (d) Y. Maegawa, T. Ohshima, Y. Hayashi, K.
or 3ja). The ortho-substituted aryl esters afforded the lower
yields of products possibly due to the large steric hindrance. A
heterocyclic aromatic ester was also tried and suitable for this
acyl-acyl exchange reaction, and could give rise to the desired
product 3la in a satisfied yield. When the unprotected 2-
naphthol was used instead of 2-naphthyl pivalate under the
standard reaction conditions, no desired product was
observed (see SI).
In another set of experiments, we selected various primary
amides as the acyl reagents to check this methodology
(Scheme 2). Several popular substituents, such as methyl,
chloro, and bromo groups, were very well compatible under
the optimized condition, and almost had no effect on the
yields of the desired acyl-exchanged products. Obviously,
when nicotinamide was used as the reactive substrate, no
desired product 3af was obtained possibly because of strong
electron-withdrawing nature of the pyridine. In addition,
aliphatic amide did not accomplish this transformation
(Scheme 2, 3bg). Other amides, such as secondary and tertiary
amides other than primary amides, were not applicable for the
current conditions (see SI).
Agura, T. Iwasaki, K. Mashima, ACS Catal. 2011, 1, 1178.
6
7
8
M. Hatano, Y. Furuya, T. Shimmura, K. Moriyama, S. Kamiya,
T. Maki, K. Ishihara, Org. Lett. 2011, 13, 426.
Y. Hayashi, S. Santoro, Y. Azuma, F. Himo, T. Ohshima, K.
Mashima, J. Am. Chem. Soc. 2013, 135, 6192.
some selected example using NHC as the catalysts for
transesterification, see: (a) G. A. Grasa, R. M. Kissling, S. P.
Nolan, Org. Lett. 2002, 4, 3583. (b) R. Singh, R. M. Kissling, M.
A. Letellier, S. P. Nolan, J. Org.Chem. 2004, 69, 209. (c) C.
Munro-Leighton, S. A. Delp, E. D. Blue, T. B. Gunnoe,
Organometallics, 2007, 26, 1483. (d) T. Q. Zeng, G. H. Song, C.
J. Li, Chem. Commun. 2009, 6249.
9
some selected other Lewis acid catalysts for
transesterification, see: (a) J. W. J. Bosco, A. K. Saikia, Chem.
Commun. 2004, 1116. (b) A. Solhy, J. H. Clark, R. Tahir, S.
Sebti, M. Larzek, Green Chem, 2006,
8 , 871. (c) M. S. Abase,
E. Akbarzadeh, S. Roholah, M. M. Mojtahedi, Monatsh Chem.
2010, 141, 757. (d) M. Tamura, S. M. A. Siddiki, K. I. Shimizu,
Green Chem , 2013, 15 , 1641.
10 (a) Y. Kita, Y. Nishii, T. Higuchi, K. Mashima, Angew. Chem.,
Int. Ed. 2012, 51, 5723. (b) Y. Kita, Y. Nishii, A. Onoue, K.
Mashima, Adv. Synth. Catal. 2013, 355, 3391. (c) L. Hie, N. F.
F. Nathel, T. K. Shah, E. L. Baker, X. Hong, Y.-F. Yang, P. Liu, K.
N. Houk, N. K. Garg, Nature. 2015, 524, 79. (d) M. C. Br
ö
hmer,
Conclusions
S. Mundinger, S. Br se, W. Bannawarth, Angew. Chem., Int.
ä
Ed. 2011, 50, 6175. (e) J. Aub
51, 3063.
é, Angew. Chem., Int. Ed. 2012,
In conclusion, we have explored an effective method for the
formation of aryl esters by acyl-acyl exchange reactions only
utilizing catalytic quantities of K2CO3 without the use of any
transition metal catalysts. The reaction could proceed
smoothly under mild conditions to give the desired aryl esters
in satisfactory yields, and tolerate various functionalities, such
as methoxy, fluoro, chloro and bromo groups. Further studies
on expanding the scope of the substrates and on detailed
reaction mechanism are in progress.
11 The amides was cleaved by amine to give carboxamides, see:
(a) C. L. Allen, B. N. Atkinson, J. M. J. Williams, Angew. Chem.
Int. Ed. 2012, 51, 1383. (b) M. Zhang, S. Imm, S. Bähn, L.
Neubert, H. Neumann, M. Baller, Angew. Chem. Int. Ed. 2012,
51, 3905.
12 (a) Y.-S. Bao, C.-Y. Chen, Z.-Z. Huang, J. Org.Chem. 2012, 77
8344. (b) S. Kumar, R. Vanjari, T. Guntreddi, K. N. Singh, RSC
Adv. 2015, , 9920.
,
5
13 Some selected examples about aldehydes as the acylating
reagents, see: (a) O. Baslé, J. Bidange, Q. Shuai, C. J. Li, Adv.
Synth. Catal. 2010, 352, 1145. (b) Q. Shuai, L. Yang, X. Y. Guo,
O. Baslé, C. J. Li, J. Am. Chem. Soc. 2010, 132, 12212. (c) Z. Liu,
J. Zhang, S. Chen, E. Shi, Y. Xu, X. Wan, Angew. Chem., Int. Ed.
2012, 51, 3231. (d) Y. J. Bian, C. Y. Chen, Z. Z. Huang, Chem.-
Eur. J. 2013, 19, 1129.
Acknowledgements
This work was supported by the Scientific and Technological
Innovation Programs of Higher Education Institutions in Shanxi
( NO. 2015176), the Doctoral Scientific Research Foundation of
Jinzhong university(NO.bsjj2015213 and NO.bsjj2015214).
14 N. A. Stephenson, J. Zhu, S. H. Gellman, S. S. Stahl, J. Am.
Chem. Soc. 2009, 131, 10003.
This journal is © The Royal Society of Chemistry 20xx
Org. Biomol. Chem.., 2016, 00, 1-3 | 3
Please do not adjust margins