10.1002/anie.202007953
Angewandte Chemie International Edition
COMMUNICATION
N2
References
O
O
1a
H
H
(0.65 g)
[1]
[2]
T. T. Talele, J. Med. Chem. 2016, 59, 8712-8756.
a) E. Bautista, R. A. Toscano, A. Ortega, Org. Lett. 2013, 15, 3210-3213;
b) H. B. Liu, H. Zhang, P. Li, Y. Wu, Z. B. Gao, J. M. Yue, Org. Biomol.
Chem. 2012, 10, 1448-1458; c) H. H. Wu, Y. P. Chen, S. S. Ying, P.
Zhang, Y. T. Xu, X. M. Gao, Y. Zhu, Tetrahedron Lett. 2015, 56, 5851-
5854.
OH
OH
Mb
LiAlH4
THF, RT, 2 hrs
4
H
89% yield, 99% ee
O
[3]
[4]
M. P. Doyle, R. E. Austin, A. S. Bailey, M. P. Dwyer, A. B. Dyatkin, A. V.
Kalinin, M. M. Y. Kwan, S. Liras, C. J. Oalmann, R. J. Pieters, M. N.
Protopopova, C. E. Raab, G. H. P. Roos, Q. L. Zhou, S. F. Martin, J Am
Chem Soc 1995, 117, 5763-5775.
H
O
H
OH
OH
LiOH
H2O/THF
reflux, 10 hrs
2a
85% isolated yield (0.48 g)
H
99% ee
O
5
a) P. S. Coelho, E. M. Brustad, A. Kannan, F. H. Arnold, Science 2013,
339, 307-310; b) M. Bordeaux, V. Tyagi, R. Fasan, Angew. Chem. Int.
Ed. 2015, 54, 1744–1748; c) Z. J. Wang, N. E. Peck, H. Renata, F. H.
Arnold, Chem Sci 2014, 5, 598-601; d) G. Sreenilayam, R. Fasan, Chem
Commun 2015, 51, 1532-1534; e) V. Tyagi, R. B. Bonn, R. Fasan, Chem
Sci 2015, 6, 2488-2494; f) S. B. J. Kan, R. D. Lewis, K. Chen, F. H. Arnold,
Science 2016, 354, 1048-1051; g) V. Tyagi, R. Fasan, Angew. Chem. Int.
Ed. 2016, 55, 2512-2516 ; h) V. Tyagi, G. Sreenilayam, P. Bajaj, A.
Tinoco, R. Fasan, Angew. Chem. Int. Ed. 2016, 55, 13562-13566; i) M.
J. Weissenborn, S. A. Low, N. Borlinghaus, M. Kuhn, S. Kummer, F.
Rami, B. Plietker, B. Hauer, Chemcatchem 2016, 8, 1636-1640; j) S. B.
J. Kan, X. Huang, Y. Gumulya, K. Chen, F. H. Arnold, Nature 2017, 552,
132-136; k) D. A. Vargas, A. Tinoco, V. Tyagi, R. Fasan, Angew. Chem.
Int. Ed. 2018, 57, 9911-9915; l) K. Chen, X. Y. Huang, S. B. J. Kan, R. K.
Zhang, F. H. Arnold, Science 2018, 360, 71-75; m) D. Vargas, R. Khade,
Y. Zhang, R. Fasan, Angew. Chem. Int. Ed. 2019, 58, 10148-10152; n)
R. K. Zhang, K. Chen, X. Huang, L. Wohlschlager, H. Renata, F. H.
Arnold, Nature 2019, 565, 67-72.
94% yield, 99% ee
Scheme 3. Gram-scale synthesis and chemoenzymatic diversification of
cyclopropyl-δ-lactones.
In summary, we have developed an efficient, versatile, and
sustainable biocatalytic platform for the enantioselective
synthesis of cyclopropyl-δ-lactones, which are key motifs in
bioactive molecules (Figure 1) as well as versatile intermediates
for the preparation of trisubstituted cyclopropanes (Scheme 3).
While neither wild-type myoglobin nor its cofactor (hemin) are able
to catalyze this intramolecular cyclopropanation reaction, two
biocatalysts capable of executing these reactions with high
enantioselectivity as well as stereodivergent selectivity across a
broad range of substrates were obtained through re-design of the
active site of this hemoprotein. These biocatalytic transformations
can be carried out using whole cell systems, which eliminates the
need for protein purification, and could be readily performed at the
gram scale, which further demonstrates their value for synthetic
applications. This study expands the range of synthetically
valuable, abiotic transformations achievable via biocatalysis and
[5]
a) P. Srivastava, H. Yang, K. Ellis-Guardiola, J. C. Lewis, Nat. Commun.
2015, 6, 7789; b) P. Dydio, H. M. Key, A. Nazarenko, J. Y. Rha, V.
Seyedkazemi, D. S. Clark, J. F. Hartwig, Science 2016, 354, 102-106; c)
G. Sreenilayam, E. J. Moore, V. Steck, R. Fasan, Adv. Synth. Cat. 2017,
359, 2076–2089; d) G. Sreenilayam, E. J. Moore, V. Steck, R. Fasan,
ACS Catal. 2017, 7, 7629-7633; e) E. J. Moore, V. Steck, P. Bajaj, R.
Fasan, J. Org. Chem. 2018, 83, 7480-7490; f) K. Ohora, H. Meichin, L.
M. Zhao, M. W. Wolf, A. Nakayama, J. Hasegawa, N. Lehnert, T. Hayashi,
J Am Chem Soc 2017, 139, 17265-17268; g) L. Villarino, K. E. Splan, E.
Reddem, L. Alonso-Cotchico, C. G. de Souza, A. Lledos, J. D. Marechal,
A. M. W. H. Thunnissen, G. Roelfes, Angew. Chem. Int. Ed. 2018, 57,
7785-7789; h) D. M. Carminati, R. Fasan, ACS Catal. 2019, 9, 9683-9697.
a) A. Tinoco, V. Steck, V. Tyagi, R. Fasan, J. Am. Chem. Soc. 2017, 139,
5293-5296; b) A. L. Chandgude, R. Fasan, Angew. Chem. Int. Ed. 2018,
57, 15852-15856; c) J. E. Zhang, X. Y. Huang, R. J. K. Zhang, F. H.
Arnold, J Am Chem Soc 2019, 141, 9798-9802.
our findings suggest that a broader spectrum of intramolecular
carbene transfer reactions than currently possible[5b,
become accessible through re-engineering of hemoprotein
scaffolds.
7]
may
[6]
[7]
Acknowledgements
a) A. L. Chandgude, X. Ren, R. Fasan, J. Am. Chem. Soc. 2019, 141,
9145-9150; b) X. Ren, A. L. Chandgude, R. Fasan, ACS Catal. 2020, 10,
2308-2313.
This work was supported by the U.S. National Institute of Health
grant GM098628. The authors are grateful to Dr. William
Brennessel for assistance with crystallographic analyses. MS and
X-ray instrumentation are supported by U.S. National Science
Foundation grants CHE-0946653 and CHE-1725028.
[8]
[9]
A. Tinoco, Y. Wei, J.-P. Bacik, D. M. Carminati, E. J. Moore, N. Ando, Y.
Zhang, R. Fasan, ACS Catal. 2019, 9 1514-1524
a) P. F. Mugford, U. G. Wagner, Y. Jiang, K. Faber, R. J. Kazlauskas,
Angew. Chem. Int. Ed. 2008, 47, 8782-8793; b) Q. Wu, P. Soni, M. T.
Reetz, J Am Chem Soc 2013, 135, 1872-1881; c) D. Koszelewski, B.
Grischek, S. M. Glueck, W. Kroutil, K. Faber, Chem. Eur. J. 2011, 17,
378-383; d) P. Bajaj, G. Sreenilayam, V. Tyagi, R. Fasan, Angew. Chem.
Int. Ed. 2016, 55, 16110–16114; e) S. P. France, G. A. Aleku, M. Sharma,
J. Mangas-Sanchez, R. M. Howard, J. Steflik, R. Kumar, R. W. Adams,
I. Slabu, R. Crook, G. Grogan, T. W. Wallace, N. J. Turner, Angew. Chem.
Int. Ed. 2017, 56, 15589-15593.
Conflict of interest
The authors declare no conflict of interest.
Keywords: intramolecular cyclopropanation • δ-lactones •
carbene transfer • myoglobin • biocatalysis
This article is protected by copyright. All rights reserved.